ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 140]      



Задача 108688

Темы:   [ Правильный (равносторонний) треугольник ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Дан правильный треугольник ABC. На продолжении стороны AC за точку C взята точка D, а на продолжении стороны BC за точку C – точка E, причём
BD = DE.  Докажите, что  AD = CE.

Прислать комментарий     Решение

Задача 111573

Темы:   [ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9

Прямоугольный лист бумаги ABCD согнули так, как показано на рисунке. Найдите отношение  DK : AB,  если C1 – середина AD.

Прислать комментарий     Решение

Задача 52437

Темы:   [ Вписанный угол равен половине центрального ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3+
Классы: 8,9

Из точки A проведены секущая и касательная к окружности радиуса R. Пусть B – точка касания, а D и C – точки пересечения секущей с окружностью, причём точка D лежит между A и C. Известно, что BD – биссектриса угла B треугольника ABC и её длина равна R. Найдите расстояние от точки A до центра окружности.

Прислать комментарий     Решение

Задача 52750

Темы:   [ Вписанные и описанные окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В прямоугольном треугольнике ABC с острым углом A, равным 30°, проведена биссектриса BD другого острого угла.
Найдите расстояние между центрами вписанных окружностей треугольников ABD и CBD, если меньший катет равен 1.

Прислать комментарий     Решение

Задача 52773

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Дана окружность с центром в точке O и радиусом 2. Из конца отрезка OA, пересекающегося с окружностью в точке M, проведена касательная AK к окружности,  ∠OAK = 60°.  Найдите радиус окружности, касающейся отрезков AK, AM и дуги MK.

Прислать комментарий     Решение

Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .