Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 303]
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
|
|
Сложность: 4- Классы: 9,10
|
В равнобедренной трапеции ABCD с основаниями BC и AD диагонали AC и BD перпендикулярны. Из точки D опущен перпендикуляр DE на сторону AB, а из точки C – перпендикуляр CF на прямую DE. Докажите, что ∠DBF = ½ ∠FCD.
Даны трапеция ABCD и перпендикулярная её основаниям AD и BC прямая l. По l движется точка X. Перпендикуляры, опущенные из A на BX и из D на CX пересекаются в точке Y. Найдите ГМТ Y.
В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
а) В каком отношении прямая LN делит сторону AB, а прямая MK – сторону BC?
б) Найдите отношение MN : KL, если LM : KN = 3 : 7.
На данной окружности зафиксированы две точки A и B, а точка M пробегает всю окружность. Из середины K отрезка MB опускается перпендикуляр на прямую MA. Основание этого перпендикуляра обозначается через P. Найдите геометрическое место точек P.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 303]