ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 303]      



Задача 66025

Темы:   [ Правильный (равносторонний) треугольник ]
[ Вписанные и описанные окружности ]
[ Три окружности пересекаются в одной точке ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 4
Классы: 9,10,11

Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Докажите, что окружности Гb и Гc пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.

Прислать комментарий     Решение

Задача 109553

Темы:   [ Касающиеся окружности ]
[ Две касательные, проведенные из одной точки ]
[ Три точки, лежащие на одной прямой ]
[ Вспомогательные подобные треугольники ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Автор: Калинин А.

Две окружности S1 и S2 касаются внешним образом в точке F. Их общая касательная касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB, касается окружности S2 в точке C и пересекает окружность S1 в точках D и E. Докажите, что общая хорда описанных окружностей треугольников ABC и BDE, проходит через точку F.

Прислать комментарий     Решение

Задача 108202

Темы:   [ Три точки, лежащие на одной прямой ]
[ Конкуррентность высот. Углы между высотами. ]
[ Вспомогательная окружность ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4+
Классы: 8,9

Автор: Сонкин М.

Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.

Прислать комментарий     Решение

Задача 111871

Темы:   [ Окружность, вписанная в угол ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Вспомогательная окружность ]
[ Вписанный угол, опирающийся на диаметр ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
Сложность: 4+
Классы: 9,10

Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что  AQOP.  Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что  OM = ON.

Прислать комментарий     Решение

Задача 111874

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Отношения линейных элементов подобных треугольников ]
[ Ортоцентр и ортотреугольник ]
[ Вписанные и описанные окружности ]
[ Вписанный угол, опирающийся на диаметр ]
[ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
Сложность: 4+
Классы: 8,9,10

В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 303]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .