Страница:
<< 55 56 57 58 59
60 61 >> [Всего задач: 303]
|
|
Сложность: 4 Классы: 9,10,11
|
Равносторонний треугольник ABC вписан в окружность Ω и описан вокруг окружности ω. На сторонах AC и AB выбраны точки P и Q соответственно так, что отрезок PQ проходит через центр O треугольника ABC. Окружности Гb и Гc построены на отрезках BP и CQ как на диаметрах.
Докажите, что окружности Гb и Гc пересекаются в двух точках, одна из которых лежит на Ω, а другая – на ω.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Две окружности
S1 и
S2 касаются внешним образом в точке
F. Их общая касательная касается
S1 и
S2 в точках
A и
B соответственно. Прямая, параллельная
AB, касается окружности
S2 в точке
C и пересекает окружность
S1 в точках
D и
E. Докажите, что общая хорда описанных окружностей треугольников
ABC и
BDE, проходит через точку
F.
Окружность с центром O вписана в треугольник ABC и касается его сторон AB, BC и AC в точках E, F и D соответственно. Прямые AO и CO пересекают прямую EF в точках M и N. Докажите, что центр окружности, описанной около треугольника OMN, точка O и точка D лежат на одной прямой.
|
|
Сложность: 4+ Классы: 9,10
|
Окружность ω с центром O вписана в угол BAC и касается его сторон в точках B и C. Внутри угла BAC выбрана точка Q. На отрезке AQ нашлась такая точка P, что AQ ⊥ OP. Прямая OP пересекает описанные окружности ω1 и ω2 треугольников BPQ и CPQ, вторично в точках M и N. Докажите, что OM = ON.
|
|
Сложность: 4+ Классы: 8,9,10
|
В неравнобедренном остроугольном треугольнике ABC проведены высоты AA1 и CC1, H – точка пересечения высот, O – центр описанной окружности, B0 – середина стороны AC. Прямая BO пересекает сторону AC в точке P, а прямые BH и A1C1 пересекаются в точке Q. Докажите, что прямые HB0 и PQ параллельны.
Страница:
<< 55 56 57 58 59
60 61 >> [Всего задач: 303]