Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 402]
Три равные окружности пересекаются в одной точке. Докажите, что треугольник с вершинами в остальных точках попарного пересечения окружностей равен треугольнику
с вершинами в центрах окружностей.
Даны три равных окружности, пересекающихся в одной точке. Вторая точка пересечения каких-либо двух из этих окружностей и центр третьей определяют проходящую через них прямую. Докажите, что полученные три прямые пересекаются в одной точке.
Площадь трапеции ABCD равна 90. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции вдвое больше другого.
|
|
Сложность: 3+ Классы: 8,9,10
|
В выпуклом пятиугольнике $ABCDE$ равны углы $CAB$, $BCA$, $ECD$, $DEC$ и $AEC$. Докажите, что середина $BD$ лежит на $CE$.
В параллелограмме со сторонами 2 и 4 проведена диагональ,
равная 3. В каждый из получившихся треугольников вписано по
окружности. Найдите расстояние между центрами окружностей.
Страница:
<< 59 60 61 62
63 64 65 >> [Всего задач: 402]