|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На графике квадратного трёхчлена с целыми коэффициентами отмечены две точки с целыми координатами. Дан многочлен с целыми коэффициентами. Если в него вместо неизвестного подставить 2 или 3, то получаются числа, кратные 6. Каждое неотрицательное целое число представимо, причём единственным образом, в виде В трапеции ABCD боковая сторона AB перпендикулярна основаниям AD и BC, диагонали трапеции пересекаются в точке E, F – основание перпендикуляра, опущенного из точки E на сторону AB. Известно, что ∠DFE = α. Найдите ∠CFE. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 122]
В параллелограмме ABCD точки E и F лежат соответственно на
сторонах AB и BC, M – точка пересечения прямых AF и DE, причём AE = 2BE,
Точки P и Q расположены на стороне BC треугольника ABC, причём BP : PQ : QC = 1 : 2 : 3. Точка R делит сторону AC этого треугольника так, что
Дана трапеция ABCD. Параллельно её основаниям проведена прямая, пересекающая боковые стороны AB и CD соответственно в точках P и Q, а диагонали AC и BD соответственно в точках L и R. Диагонали AC и BD пересекаются в точке O. Известно, что BC = a, AD = b, а площади треугольников BOC и LOR равны. Найдите PQ, если точка L лежит между точками A и O.
Каждая сторона треугольника разделена на три равные части. Точки деления служат вершинами двух треугольников, пересечение которых – шестиугольник. Найдите площадь этого шестиугольника, если площадь данного треугольника равна S.
В треугольнике ABC точка D делит сторону AB пополам, а точка E лежит на стороне BC, причём отрезок BE в 3 раза меньше стороны BC. Отрезки AE и CD пересекаются в точке O. Найдите AB, если известно, что AE = 5, OC = 4, а ∠AOC = 120°.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 122] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|