Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1221]
|
|
Сложность: 3+ Классы: 8,9,10
|
В таблице
0 1 2 3 ... 9
9 0 1 2 ... 8
8 9 0 1 ... 7
...
1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один
элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.
|
|
Сложность: 3+ Классы: 9,10,11
|
На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу?
|
|
Сложность: 3+ Классы: 7,8,9,10
|
20 шахматистов сыграли турнир в один круг. Корреспондент "Спортивной газеты" написал в своей заметке, что каждый участник этого турнира выиграл столько же партий, сколько и свёл вничью. Докажите, что корреспондент ошибся.
|
|
Сложность: 3+ Классы: 7,8,9
|
Путешественник посетил деревню, в котором каждый человек либо всегда говорит
правду, либо всегда лжёт. Жители деревни стали в круг, и каждый сказал
путешественнику про соседа справа, правдив ли он. На основании этих сообщений путешественник смог однозначно определить, какую долю от всех жителей деревни составляют лжецы. Определите и вы, чему она равна.
|
|
Сложность: 3+ Классы: 8,9,10
|
Какими должны быть значения a и b, чтобы многочлен
x4 + x³ + 2x² + ax + b был полным квадратом?
Страница:
<< 102 103 104 105
106 107 108 >> [Всего задач: 1221]