Страница:
<< 101 102 103 104
105 106 107 >> [Всего задач: 1235]
|
|
|
Сложность: 3+ Классы: 10,11
|
Числа 1, 2, ..., k² расположены в квадратную таблицу
Произвольное число выписывается, после чего из таблицы вычеркивается строка и столбец, содержащие это число. То же самое проделывается с оставшейся таблицей из (
k – 1)² чисел и т.д.
k раз. Найти сумму выписанных чисел.
Имеется два набора чисел a1 > a2 > ... > an и b1 > b2 > ... > bn. Доказать, что a1b1 + a2b2 + ... + anbn > a1bn + a2bn–1 + ... + anb1.
В составлении 40 задач приняло участие 30 студентов со всех пяти курсов. Каждые два однокурсника придумали одинаковое число задач. Каждые два студента с
разных курсов придумали разное число задач. Сколько человек придумало ровно по одной задаче?
Имеется трёхзначное число abc, берём cba и вычтем из большего меньшее. Получим число a1b1c1, сделаем с ним то же самое и т.д.
Доказать, что на каком-то шаге мы получим или число 495, или 0. Случай a1 = 0 допускается.
Число y получается из натурального числа x некоторой перестановкой его цифр. Докажите, что каково бы ни было x,
Страница:
<< 101 102 103 104
105 106 107 >> [Всего задач: 1235]