ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1235]      



Задача 78080

Темы:   [ Неравенства с площадями ]
[ Итерации ]
Сложность: 6
Классы: 8,9

На столе лежат 15 журналов, закрывающих его целиком. Докажите, что можно забрать семь журналов так, чтобы оставшиеся журналы закрывали не меньше 8/15 площади стола. (Эту задачу не решил никто из участников олимпиады.)
Прислать комментарий     Решение


Задача 109694

Темы:   [ Геометрия на клетчатой бумаге ]
[ Процессы и операции ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 6
Классы: 9,10,11

В квадрате n×n клеток бесконечной шахматной доски расположены n2 фишек, по одной фишке в каждой клетке. Ходом называется перепрыгивание любой фишкой через соседнюю по стороне фишку, непосредственно за которой следует свободная клетка. При этом фишка, через которую перепрыгнули, с доски снимается. Докажите, что позиция, в которой дальнейшие ходы невозможны, возникнет не ранее, чем через [] ходов.
Прислать комментарий     Решение


Задача 105192

Темы:   [ Двоичная система счисления ]
[ Разбиения на пары и группы; биекции ]
[ Объединение, пересечение и разность множеств ]
[ Целая и дробная части. Принцип Архимеда ]
[ Экстремальные свойства (прочее) ]
Сложность: 7
Классы: 10,11

Вдоль стены круглой башни по часовой стрелке ходят два стражника, причём первый из них — вдвое быстрее второго. В этой стене, имеющей длину 1, проделаны бойницы. Система бойниц называется надёжной, если в каждый момент времени хотя бы один из стражников находится возле бойницы.

а) Какую наименьшую длину может иметь бойница, если система, состоящая только из этой бойницы, надежна?

б) Докажите, что суммарная длина бойниц любой надёжной системы больше 1/2.

в) Докажите, что для любого числа s>1/2 существует надёжная система бойниц с суммарной длиной, меньшей s.
Прислать комментарий     Решение


Задача 87998

Темы:   [ Уравнения в целых числах ]
[ Системы линейных уравнений ]
[ Перебор случаев ]
Сложность: 2
Классы: 6,7

Попробуйте разменять 25-рублёвую купюру одиннадцатью купюрами достоинством 1, 3 и 5 рублей.

Прислать комментарий     Решение

Задача 102980

Темы:   [ Десятичная система счисления ]
[ Лингвистика ]
[ Перебор случаев ]
Сложность: 2
Классы: 5,6

Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?
Прислать комментарий     Решение


Страница: << 161 162 163 164 165 166 167 >> [Всего задач: 1235]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .