ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Два концентрических круга поделены на 2k равных секторов. Каждый сектор выкрашен в белый или чёрный цвет. Доказать, что если белых и чёрных секторов на каждом круге одинаковое количество, то можно сделать такой поворот, что по крайней мере на половине длины окружности будут соприкасаться разноцветные куски.

Вниз   Решение


Решите неравенство:
|x + 2000| < |x - 2001|.

ВверхВниз   Решение


Треугольник ABC вписан в окружность с центром O. Прямые AC и BC вторично пересекают окружность, проходящую через точки A, O и B, в точках E и K. Докажите, что прямые OC и EK перпендикулярны.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 354]      



Задача 35614

Темы:   [ Уравнение плоскости ]
[ Прямые и плоскости в пространстве (прочее) ]
Сложность: 2+
Классы: 10,11

Плоскость, заданная уравнением x+2y+3z=0, разбивает пространство на два полупространства. Узнайте, в одном или в разных полупространствах лежат точки (1,2,-2) и (2,1,-1).
Прислать комментарий     Решение


Задача 102713

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Даны точки A(0; - 2), B(- 2;1), C(0;0) и D(2; - 9). Укажите те из них, которые лежат на прямой 2x - 3y + 7 = 0.

Прислать комментарий     Решение


Задача 104032

Темы:   [ Выход в пространство ]
[ Наглядная геометрия в пространстве ]
[ Правильный тетраэдр ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2+
Классы: 7,8,9

Сложите шесть спичек так, чтобы они образовали четыре равносторонних треугольника.
Прислать комментарий     Решение


Задача 102714

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку M(- 3;1) параллельно а) оси Ox; б) оси Oy.

Прислать комментарий     Решение


Задача 102717

Тема:   [ Метод координат на плоскости ]
Сложность: 2+
Классы: 8,9

Составьте уравнение прямой, проходящей через точку пересечения прямых 3x + 2y - 5 = 0 и x - 3y + 2 = 0 параллельно оси ординат.

Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .