|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть A1, B1,..., F1 — середины сторон AB, BC,..., FA произвольного шестиугольника. Докажите, что точки пересечения медиан треугольников A1C1E1 и B1D1F1 совпадают. Докажите, что расстояние от точки (x0, y0) до прямой ax + by + c = 0 равно Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины. Даны точки A(0;0), B(- 2;1), C(3;3), D(2; - 1) и окружность (x - 1)2 + (y + 3)2 = 25. Выясните, где расположены эти точки: на окружности, внутри или вне окружности.
Составьте уравнение прямой, проходящей через точку M(- 3;2) параллельно прямой 2x - 3y + 4 = 0.
Даны точки A(–1, 5) и B(3, –7). Найдите расстояние от начала координат до середины отрезка AB. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 217]
Окружность с центром в точке M(3;1) проходит через начало координат. Составьте уравнение окружности.
Найдите периметр треугольника ABC, если известны координаты его вершин A(–3, 5), B(3, –3) и точки M(6, 1), являющейся серединой стороны BC.
Найдите периметр треугольника KLM, если известны координаты его вершин K(–4, –3), L(2, 5) и точки P(5, 1), являющейся серединой стороны LM.
Найдите длину хорды, которую на прямой y = 3x высекает окружность (x + 1)2 + (y - 2)2 = 25.
Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 217] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|