ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 217]      



Задача 57659

Темы:   [ Метод координат на плоскости ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3
Классы: 8,9,10

а) Докажите, что площадь треугольника с вершинами в точках (0, 0), (x1, y1) и (x2, y2) равна $ {\frac{1}{2}}$| x1y2x2y1|.
б) Докажите, что площадь треугольника с вершинами в точках (x1, y1), (x2, y2) и (x3, y3) равна

$\displaystyle {\textstyle\frac{1}{2}}$| x1y2 + x2y3 + x3y1x2y1x1y3x3y2|.


Прислать комментарий     Решение

Задача 57660

Темы:   [ Метод координат на плоскости ]
[ Вписанные и описанные окружности ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 8,9,10,11

Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.
Прислать комментарий     Решение


Задача 87169

Темы:   [ Метод координат в пространстве ]
[ Векторы (прочее) ]
Сложность: 3
Классы: 8,9

Найдите угол между прямой, проходящей через точки A(-3;0;1) и B(2;1;-1) , и прямой, проходящей через точки C(-2;2;0) и D(1;3;2) .
Прислать комментарий     Решение


Задача 87178

Темы:   [ Метод координат в пространстве ]
[ Прямоугольные параллелепипеды ]
Сложность: 3
Классы: 8,9

Непересекающиеся диагонали двух смежных граней прямоугольного параллелепипеда наклонены к плоскости основания под углами α и β . Найдите угол между этими диагоналями.
Прислать комментарий     Решение


Задача 87197

Темы:   [ Метод координат в пространстве ]
[ Углы между прямыми и плоскостями ]
Сложность: 3
Классы: 10,11

Даны точки A(-3;0;1) , B(2;1;-1) , C(-2;2;0) и D(1;3;2) . Найдите угол между прямыми AB и CD .
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 217]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .