ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 127]      



Задача 87227

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильная призма ]
Сложность: 4
Классы: 8,9

Все рёбра правильной треугольной призмы ABCA1B1C1 равны a . Рассматриваются отрезки с концами на диагоналях BC1 и CA1 боковых граней, параллельные плоскости ABB1A1 . 1) Один из этих отрезков проведён через точку M диагонали BC1 , для которой BM:BC1 = 1:3 . Найдите его длину. 2) Найдите наименьшую длину всех рассматриваемых отрезков.
Прислать комментарий     Решение


Задача 87228

Темы:   [ Максимальное/минимальное расстояние ]
[ Свойства сечений ]
Сложность: 4
Классы: 8,9

Сторона основания ABCD правильной пирамиды SABCD равна a , боковое ребро равно 2a . Рассматриваются отрезки с концами на диагонали BD основания и боковом ребре SC , параллельные плоскости SAD . 1) Один из этих отрезков проведён через точку M диагонали BD , для которой DM:DB = 1:3 . Найдите его длину. 2) Найдите наименьшую длину всех рассматриваемых отрезков.
Прислать комментарий     Решение


Задача 87349

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина, SA = 4 ) точка D лежит на ребре SC , CD = 3 , а расстояние от точки A до прямой BD равно 2. Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке A . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки M и N лежат на прямой BD , а прямая PQ касается сферы в одной из точек отрезка PQ . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87350

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной пирамиде SMNPQ ( S – вершина) точки H и F – середины рёбер MN и NP соответственно, точка E лежит на отрезке SH , причём SH = 3 , SE = . Расстояние от точки S до прямой EF равно . Найдите объём пирамиды. Дана сфера радиуса 1 с центром в точке S . Рассматриваются всевозможные правильные тетраэдры ABCD такие, что точки C и D лежат на прямой EF , а прямая AB касается сферы в одной из точек отрезка AB . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Задача 87351

Темы:   [ Максимальное/минимальное расстояние ]
[ Правильный тетраэдр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина, SA = 2 ) точка D – середина ребра SB . Расстояние от точки C до прямой AD равно . Найдите объём пирамиды. Дана сфера радиуса с центром в точке C . Рассматриваются всевозможные правильные тетраэдры MNPQ такие, что точки P и Q лежат на прямой AD , а прямая MN касается сферы в одной из точек отрезка MN . Найдите наименьшее значение длины ребра рассматриваемых тетраэдров.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 127]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .