Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 79]
|
|
Сложность: 2+ Классы: 7,8,9
|
Докажите, что составное число n всегда имеет делитель, больший 1, но не больший .
|
|
Сложность: 3 Классы: 6,7,8
|
а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).
б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.
|
|
Сложность: 4- Классы: 8,9,10
|
Найдите сумму всех правильных несократимых дробей со знаменателем n.
|
|
Сложность: 4- Классы: 7,8,9
|
Найдите все такие простые числа p, что число p² + 11 имеет ровно шесть различных делителей (включая единицу и само число).
|
|
Сложность: 4- Классы: 7,8,9
|
Докажите, что каждое натуральное число является разностью двух натуральных
чисел, имеющих одинаковое количество простых делителей.
(Каждый простой делитель учитывается один раз, например, число 12 имеет два простых делителя: 2 и 3.)
Страница:
<< 10 11 12 13 14 15
16 >> [Всего задач: 79]