Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 497]
Две окружности касаются внешним образом в точке A. Прямая, проходящая
через точку A, пересекает первую окружность в точке B, а вторую
окружность – в точке C. Касательная в точке B к первой окружности пересекает вторую окружность в точках D и E (точка D лежит между B и E). Известно, что
AB = 5 и AC = 4. Найдите длину отрезка CE и расстояние от точки A до центра окружности, касающейся отрезка AD и продолжений отрезков ED и EA за точки D и A соответственно.
Две окружности касаются внешним образом в точке K. Прямая, проходящая
через точку K, пересекает первую окружность в точке L, а вторую
– в точке M. Касательная к первой окружности, проходящая через точку L, пересекает вторую окружность в точках A и B (точка B лежит между A и L). Известно, что BM = 3 и KM = 1. Найдите длину отрезка KL и расстояние от точки L до центра окружности, касающейся отрезка KB и продолжений отрезков AB и AK за точки B и K
соответственно.
В трапеции ABCD с боковыми сторонами AB = 9 и CD = 5 биссектриса угла D пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла B пересекает те же две биссектрисы в точках L и K, причём точка K лежит на основании AD.
а) В каком отношении прямая LN делит сторону AB, а прямая MK – сторону BC?
б) Найдите отношение MN : KL, если LM : KN = 3 : 7.
В трапеции ABCD с боковыми сторонами AB = 8 и CD = 5 биссектриса угла B пересекает биссектрисы углов A и C в точках M и N соответственно, а биссектриса угла D пересекает те же две биссектрисы в точках L и K, причём точка L лежит на основании BC.
а) В каком отношении прямая MK делит сторону AB, а прямая LN – сторону AD?
б) Найдите отношение KL : MN, если LM : KN = 4 : 7.
На стороне PQ треугольника PQR взята точка N, а на стороне
PR – точка L, причём NQ = LR. Точка A пересечения отрезков QL и NR делит отрезок QL в отношении m : n, считая от точки Q. Найдите отношение PN : PR.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 497]