Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 235]
|
|
|
Сложность: 4 Классы: 9,10,11
|
Пусть a0 – целое, a1, ..., an – натуральные числа. Определим две последовательности
P–1 = 1, P0 = a0, Pk = akPk–1 + Pk–2 (1 ≤ k ≤ n); Q–1 = 0, Q0 = 1, Qk = akQk–1 + Qk–2 (1 ≤ k ≤ n).
Дроби Pk/Qk называются подходящими дробями к числу [a0; a1, a2, ..., an].
Докажите, что построенные последовательности для k = 0, 1, ..., n обладают следующими свойствами:
а) Pk/Qk = [a0; a1, a2,..., ak];
б) PkQk–1 – Pk–1Qk = (–1)k+1;
в) (Pk, Qk) = 1.
|
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что для любой бесконечной цепной дроби
[a0; a1, ..., an, ...] существует предел её подходящих дробей – иррациональное число α. Объясните, почему если это число α разложить в бесконечную цепную дробь при помощи алгоритма задачи 60606, то получится бесконечная цепная дробь, равная исходной.
|
|
|
Сложность: 4 Классы: 10,11
|
Докажите, что если положительная квадратичная иррациональность α =
разлагается в чисто периодическую цепную дробь, то сопряженная ей квадратичная иррациональность α' =
принадлежит интервалу (– 1, 0).
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Число N = 142857 обладает и рядом других свойств. Например: 2·142857 = 285714, 3·142857 = 428571, ..., то есть при умножении на 1, 2, 3, ..., 6 цифры циклически переставляются;
14 + 28 + 57 = 99; N2 = 20408122449, 20408 + 122449 = 142857 = N.
Аналогичные операции можно проделывать и с другими периодами дробей. Что получается для чисел 1/17, 1/19? Объясните эти факты.
|
|
|
Сложность: 4 Классы: 8,9,10
|
Число
представили в виде несократимой дроби.
Докажите, что если 3n + 1 – простое число, то числитель получившейся дроби делится на 3n + 1.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 235]