Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 149]
Две окружности
σ1 и
σ2 пересекаются в точках
A и
B .
Пусть
PQ и
RS – отрезки общих внешних касательных к этим окружностям (точки
P и
R лежат на
σ1 ,
точки
Q и
S – на
σ2 ).
Оказалось, что
RB|| PQ . Луч
RB вторично пересекает
σ2 в точке
W .
Найдите отношение
RB/BW .
|
|
Сложность: 5+ Классы: 8,9,10,11
|
Пусть
AD – биссектриса треугольника
ABC и прямая
l
касается окружностей, описанных около треугольников
ADB и
ADC , в точках
M и
N соответственно. Докажите, что
окружность, проходящая через середины отрезков
BD ,
DC и
MN касается прямой
l .
Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC.
Две равные окружности с центрами O1 и O2 пересекаются в точках A и B. Отрезок O1O2 пересекает эти окружности в точках M и N.
Докажите, что четырёхугольники O1AO2B и AMBN – ромбы.
Найдите координаты точек пересечения окружностей
(x - 2)2 + (y - 10)2 = 50 и x2 + y2 + 2(x - y) - 18 = 0.
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 149]