Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 185]
|
|
Сложность: 4 Классы: 9,10,11
|
В выпуклой n-угольной призме равны все боковые грани. При каких n эта призма обязательно прямая?
Все вершины правильной пирамиды
PABCD лежат на боковой
поверхности цилиндра, ось которого перпердикулярна плоскости
PAB . Найдите радиус основания цилиндра, если
AB = a .
Одна вершина правильного тетраэдра расположена на оси
цилиндра, а другие вершины – на боковой поверхности цилиндра.
Найдите ребро тетраэдра, если радиус основания цилиндра равен
R .
[Багаж в Московском метрополитене]
|
|
Сложность: 4 Классы: 10,11
|
Будем называть "размером" прямоугольного параллелепипеда сумму трёх его
измерений – длины, ширины и высоты.
Может ли случиться, что в некотором прямоугольном параллелепипеде поместился больший по размеру прямоугольный параллелепипед?
|
|
Сложность: 4 Классы: 10,11
|
Диагонали прямоугольного параллелепипеда
ABCDA1
B1
C1
D1
,
вписанного в сферу радиуса
R , наклонены к плоскости основания
под углом
45
o . Найдите площадь сечения этого параллелепипеда
плоскостью, которая проходит через диагональ
AC1
, параллельна
диагонали основания
BD и образует с диагональю
BD1
угол, равный
arcsin .
Страница:
<< 25 26 27 28
29 30 31 >> [Всего задач: 185]