Страница:
<< 31 32 33 34 35
36 37 >> [Всего задач: 185]
|
|
Сложность: 7- Классы: 10,11
|
Докажите, что если два прямоугольных параллелепипеда имеют равные объемы, то их можно расположить в
пространстве так, что любая горизонтальная плоскость, пересекающая один из них, будет пересекать и
второй, причем по многоугольнику той же площади.
Можно ли расположить на плоскости
а) 4 точки так, чтобы каждая из них была соединена отрезками с тремя другими (без пересечений)?
б) 6 точек и соединить их непересекающимися отрезками так, чтобы из каждой точки выходило ровно 4 отрезка?
|
|
Сложность: 3 Классы: 9,10,11
|
Можно ли нарисовать на плоскости четыре красных и четыре чёрных точки так,
чтобы для каждой тройки точек одного цвета нашлась такая точка другого цвета,
что эти четыре точки являются вершинами параллелограмма?
|
|
Сложность: 3+ Классы: 10,11
|
Вписанная и вневписанная сферы треугольной пирамиды ABCD касаются её грани BCD в различных точках X и Y.
Докажите, что треугольник AXY тупоугольный.
|
|
Сложность: 4- Классы: 10,11
|
Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.
Страница:
<< 31 32 33 34 35
36 37 >> [Всего задач: 185]