ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 145]      



Задача 115880

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Правильные многоугольники ]
[ Ортогональная проекция (прочее) ]
[ Решение задач при помощи аффинных преобразований ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10,11

Верно ли, что при любом n правильный 2n-угольник является проекцией некоторого многогранника, имеющего не более, чем  n + 2  грани?

Прислать комментарий     Решение

Задача 67319

Темы:   [ Равногранный тетраэдр ]
[ Центр масс ]
[ Ортогональная проекция (прочее) ]
[ Прямая Эйлера и окружность девяти точек ]
Сложность: 5-
Классы: 10,11

В тетраэдре $ABCD$ скрещивающиеся рёбра попарно равны. Через середину отрезка $AH_A$, где $H_A$  – точка пересечения высот грани $BCD$, провели прямую $h_A$ перпендикулярно плоскости $BCD$. Аналогичным образом определили точки $H_B$, $H_C$, $H_D$ и построили прямые $h_B$, $h_C$, $h_D$ соответственно для трёх других граней тетраэдра. Докажите, что прямые $h_A$, $h_B$, $h_C$, $h_D$ пересекаются в одной точке.
Прислать комментарий     Решение


Задача 79626

Темы:   [ Неравенства с площадями ]
[ Векторы помогают решить задачу ]
[ Площадь и ортогональная проекция ]
[ Скалярное произведение ]
[ Тетраэдр (прочее) ]
[ Правильный тетраэдр ]
Сложность: 5
Классы: 10,11

Внутри тетраэдра расположен треугольник, проекции которого на 4 грани тетраэдра имеют площади P1, P2, P3, P4. Докажите, что а) в правильном тетраэдре P1P2 + P3 + P4; б) если S1, S2, S3, S4 — площади соответствующих граней тетраэдра, то P1S1P2S2 + P3S3 + P4S4.
Прислать комментарий     Решение


Задача 105188

Темы:   [ Cкрещивающиеся прямые, угол между ними ]
[ Проектирование помогает решить задачу ]
[ Параллельное проектирование (прочее) ]
[ Малые шевеления ]
[ Аффинная геометрия (прочее) ]
Сложность: 6
Классы: 10,11

Верно ли, что для любых четырёх попарно скрещивающихся прямых можно так выбрать по одной точке на каждой из них, чтобы эти точки были вершинами а) трапеции, б) параллелограмма?
Прислать комментарий     Решение


Задача 109801

Темы:   [ Свойства сечений ]
[ Прямоугольные параллелепипеды ]
[ Ортогональная проекция (прочее) ]
[ Длины и периметры (геометрические неравенства) ]
Сложность: 6
Классы: 10,11

В прямоугольном параллелепипеде проведено сечение, являющееся шестиугольником. Известно, что этот шестиугольник можно поместить в некоторый прямоугольник Π . Докажите, что в прямоугольник Π можно поместить одну из граней параллелепипеда.
Прислать комментарий     Решение


Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 145]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .