Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.

Вниз   Решение


Решите систему уравнений:
    xy(x + y) = 30
    x³ + y³ = 35.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точках M и N. Докажите, что если вершины A и C некоторого прямоугольника ABCD лежат на окружности S1, а вершины B и D – на окружности S2, то точка пересечения диагоналей прямоугольника лежит на прямой MN.

ВверхВниз   Решение


Боковая грань образует с плоскостью основания правильной шестиугольной пирамиды угол 60o . Найдите угол бокового ребра с плоскостью основания.

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна , а угол боковой грани с плоскостью основания равен 60o . Найдите объём пирамиды.

ВверхВниз   Решение


Какое наибольшее конечное число корней может иметь уравнение

|x-a1|+..+|x-a50|=|x-b1|+..+|x-b50|,

где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?

ВверхВниз   Решение


Сторона основания правильной шестиугольной пирамиды равна , а угол боковой грани с плоскостью основания равен 60o . Найдите площадь сечения, проведённого через вершину пирамиды и меньшую диагональ основания.

ВверхВниз   Решение


На доске выписано  (n – 1)n  выражений:   x1x2x1x3,  ...,  x1xnx2x1x2x3,  ...,  x2xn,  ...,  xnxn–1,   где  n ≥  3.  Лёша записал в тетрадь все эти выражения, их суммы по два различных, по три различных и т. д. вплоть до суммы всех выражений. При этом Лёша во всех выписываемых суммах приводил подобные слагаемые (например, вместо  (x1x2) + (x2x3)  Лёша запишет  x1x3,  а вместо  (x1x2) + (x2x1)  он запишет 0).
Сколько выражений Лёша записал в тетрадь ровно по одному разу?

ВверхВниз   Решение


Все рёбра правильной четырёхугольной пирамиды равны a . Найдите радиус вписанной сферы.

ВверхВниз   Решение


Найдите угол между гранями правильного тетраэдра.

ВверхВниз   Решение


Тетраэдр называется равногранным, если все его грани – равные между собой треугольники. Докажите, что если достроить равногранный тетраэдр до параллелепипеда, проведя через его противоположные рёбра пары параллельных плоскостей, то получится прямоугольный параллелепипед,

ВверхВниз   Решение


Даны точки A(- 2;0), B(1;6), C(5;4) и D(2; - 2). Докажите, что четырехугольник ABCD — прямоугольник.

ВверхВниз   Решение


В пространстве проведены три прямые, не лежащие в одной плоскости. но при этом никакие две не являются скрещивающимися. Докажите, что все эти прямые проходят через одну точку либо параллельны.

ВверхВниз   Решение


Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Через точку пересечения медиан треугольника ABC проведена плоскость, параллельная прямым AB и CD . В каком отношении эта плоскость делит медиану, проведённую к стороне CD треугольника ACD ?

Вверх   Решение

Задача 109077
Темы:    [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11
Из корзины
Прислать комментарий

Условие

Пусть A , B , C и D – четыре точки, не лежащие в одной плоскости. Через точку пересечения медиан треугольника ABC проведена плоскость, параллельная прямым AB и CD . В каком отношении эта плоскость делит медиану, проведённую к стороне CD треугольника ACD ?

Решение

Пусть O – точка пересечения медиан треугольника ABC , P – середина CD . Плоскость ABC проходит через прямую AB , параллельную секущей плоскости, и имеет с секущей плоскостью общую точку O . Значит, прямая l пересечения этих плоскостей параллельна прямой AB . Пусть прямая l пересекает отрезок AC в точке M . Плоскость ACD проходит через прямую CD , параллельную секущей плоскости, и имеет с секущей плоскостью общую точку M . Значит, прямая m пересечения этих плоскостей параллельна прямой CD . Пусть прямая m пересекает отрезок AD в точке L , точка E – середина отрезка AB , Q – точка пересечения отрезков LM и AP (а значит, Q – точка пересечения секущей плоскости с указанной медианой AP треугольника ACD ). Тогда

= = = .


Ответ

1:2 .

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 8142

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .