Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T .

Вниз   Решение


2002 год — год-палиндром, то есть одинаково читается справа налево и слева направо. Предыдущий год-палиндром был 11 лет назад (1991). Какое максимальное число годов-непалиндромов может идти подряд (между 1000 и 9999 годами)?

ВверхВниз   Решение


В прямоугольник вписан четырёхугольник (на каждой стороне прямоугольника по одной вершине четырёхугольника).
Докажите, что периметр четырёхугольника не меньше удвоенной диагонали прямоугольника.

ВверхВниз   Решение


В параллелограмме ABCD на диагонали AC отмечена точка K . Окружность s1 проходит через точку K и касается прямых AB и AD , причём вторая точка пересечения s1 с диагональю AC лежит на отрезке AK . Окружность s2 проходит через точку K и касается прямых CB и CD , причём вторая точка пересечения s2 с диагональю AC лежит на отрезке KC . Докажите, что при всех положениях точки K на диагонали AC прямые, соединяющие центры окружностей s1 и s2 , будут параллельны между собой.

ВверхВниз   Решение


Еще Архимед знал, что шар занимает ровно объема цилиндра, в который он вписан (шар касается стенок, дна и крышки цилиндра). В цилиндрической упаковке находятся 5 стоящих друг на друге шаров. Найдите отношение пустого места к занятому в этой упаковке.


ВверхВниз   Решение


При каких  n > 3  правильный n-угольник можно разрезать диагоналями (возможно, пересекающимися внутри него) на равные треугольники?

ВверхВниз   Решение


На доске написано n выражений вида  *x² + *x + * = 0  (n – нечетное число). Двое играют в такую игру. Ходят по очереди. За ход разрешается заменить одну из звёздочек числом, не равным нулю. Через 3n ходов получится n квадратных уравнений. Первый игрок стремится к тому, чтобы как можно большее число этих уравнений не имело корней, а второй хочет ему помешать. Какое наибольшее число уравнений, не имеющих корней, может получить первый игрок независимо от игры второго?

ВверхВниз   Решение


В круглый бокал, осевое сечение которого — график функции y = x4, опускают вишенку — шар радиуса r. При каком наибольшем r шар коснется нижней точки дна? (Другими словами, каков максимальный радиус r круга, лежащего в области y$ \ge$x4 и содержащего начало координат?)

ВверхВниз   Решение


Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

ВверхВниз   Решение


На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых k+1 квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на 2k-1 непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.

ВверхВниз   Решение


Докажите, что для любого  k > 1  найдётся такая степень двойки, что среди k последних её цифр не менее половины составляют девятки.
(Например,  212 = ...96,  253 = ...992.)

ВверхВниз   Решение


Автор: Карасев Р.

В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01.

ВверхВниз   Решение


а) Внутри сферы находится некоторая точка A. Через A провели три попарно перпендикулярные прямые, которые пересекли сферу в шести точках.
Докажите, что центр масс этих точек не зависит от выбора такой тройки прямых.

б) Внутри сферы находится икосаэдр, его центр A не обязательно совпадает с центром сферы. Лучи, выпущенные из A в вершины икосаэдра, высекают 12 точек на сфере. Икосаэдр повернули так, что его центр остался на месте. Теперь лучи высекают 12 новых точек.
Докажите, что их центр масс совпадает с центром масс старых 12 точек.

ВверхВниз   Решение


ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что  AB = 2AD. Точки M и N на стороне AC таковы, что  AM = NC.  На продолжении стороны CB за точку B взята такая точка K, что  CN = BK.  Найдите угол между прямыми NK и DM.

Вверх   Решение

Задача 116907
Темы:    [ Прямоугольные треугольники (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

ABC – равнобедренный прямоугольный треугольник. На продолжении гипотенузы AB за точку A взята точка D так, что  AB = 2AD. Точки M и N на стороне AC таковы, что  AM = NC.  На продолжении стороны CB за точку B взята такая точка K, что  CN = BK.  Найдите угол между прямыми NK и DM.


Решение

Пусть L – проекция M на AB. Заметим, что  ;  поэтому и  .  Значит, прямоугольные треугольники MLD и NCK подобны, и  ∠MDL = ∠NKC  (см. рис.). Поэтому угол между прямыми NK и MD равен углу между прямыми KC и LD, то есть 45°.


Ответ

45°.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2012
класс
Класс 9
задача
Номер 9.5

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .