Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой вырезаны
  а) клеточки b3 и e7;
  б) два противоположных угловых поля (a1 и h8)?

Вниз   Решение


На одной прямой взяты точки A1, B1 и C1, а на другой — точки A2, B2 и C2. Прямые A1B2 и A2B1B1C2 и B2C1C1A2 и C2A1 пересекаются в точках C, A и B соответственно. Докажите, что точки A, B и C лежат на одной прямой (Папп).

ВверхВниз   Решение


На сторонах AB, BC и CD четырехугольника ABCD (или на их продолжениях) взяты точки K, L и M. Прямые KL и AC пересекаются в точке PLM и BD — в точке Q. Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.

ВверхВниз   Решение


Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки.

ВверхВниз   Решение


Докажите, что среди любых 10 целых чисел найдётся несколько, сумма которых делится на 10.

ВверхВниз   Решение


Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O.

ВверхВниз   Решение


а) На параллельных прямых a и b даны точки A и B. Проведите через данную точку C прямую l, пересекающую прямые a и b в таких точках A1 и B1, что AA1 = BB1.
б) Проведите через точку C прямую, равноудаленную от данных точек A и B.

ВверхВниз   Решение


Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10.
Найдите математическое ожидание числа моментов, когда наступала ничья.

ВверхВниз   Решение


Продолжения сторон AB и CD четырехугольника ABCD пересекаются в точке P, а продолжения сторон BC и AD — в точке Q. Через точку P проведена прямая, пересекающая стороны BC и AD в точках E и F. Докажите, что точки пересечения диагоналей четырехугольников  ABCD, ABEF и CDFE лежат на прямой, проходящей через точку Q.

ВверхВниз   Решение


Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого?

ВверхВниз   Решение


На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что   ∠AB2C = ∠AC2B = 90°.  Докажите, что  AB2 = AC2.

ВверхВниз   Решение


На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник.

ВверхВниз   Решение


Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность.

ВверхВниз   Решение


В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Вверх   Решение

Задача 21983
Темы:    [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 3-
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.


Решение

Разобьем наш квадрат на 25 квадратов со стороной 20 см. По обобщенному принципу Дирихле, в какой-то из них попадет по крайней мере три точки из 51 брошенной.

Источники и прецеденты использования

книга
Автор Генкин С.А., Итенберг И.В., Фомин Д.В.
Год издания 1994
Название Ленинградские математические кружки
Издательство Киров: "АСА"
Издание 1
глава
Номер 5
Название Принцип Дирихле
Тема Принцип Дирихле
задача
Номер 015

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .