Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

В выпуклом четырехугольнике $ABCD$ точки $K$, $L$, $M$, $N$ – середины сторон $BC$, $CD$, $DA$, $AB$ соответственно. Отрезки $AK$, $BL$, $CM$, $DN$, пересекаясь, делят друг друга на три части. Оказалось, что отношение длины средней части к длине всего отрезка одно и то же для всех четырех отрезков. Верно ли, что $ABCD$ – параллелограмм?

Вниз   Решение


В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

ВверхВниз   Решение



Сторона основания ABCD правильной четырехугольной пирамиды SABCD равна a, боковое ребро равно b. Найдите площадь сечения пирамиды плоскостью, проходящей через прямую BD параллельно прямой AS.

ВверхВниз   Решение


В пространстве (но не в одной плоскости) расположены шесть различных точек: A, B, C, D, E и F. Известно, что отрезки AB и DE, BC и EF, CD и FA попарно параллельны. Докажите, что эти же отрезки и попарно равны.

ВверхВниз   Решение


Верны ли утверждения:
  а) Если многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  б) Если выпуклый многоугольник можно разбить ломаной на два равных многоугольника, то его можно разбить отрезком на два равных многоугольника.
  в) Если выпуклый многоугольник можно разбить ломаной на два многоугольника, которые можно перевести друг в друга движением, сохраняющим ориентацию (то есть поворотом или параллельным переносом), то его можно разбить отрезком на два многоугольника, которые можно перевести друг в друга таким же движением.

ВверхВниз   Решение


Рассмотрим множество последовательностей длины n, состоящих из 0 и 1, в которых не бывает двух 1 стоящих рядом. Докажите, что количество таких последовательностей равно Fn + 2. Найдите взаимно-однозначное соответствие между такими последовательностями и маршрутами кузнечика из задачи 3.109.

ВверхВниз   Решение



Имеется m белых и n чёрных шаров, причём  m > n.
Сколькими способами можно все шары разложить в ряд так, чтобы никакие два чёрных шара не лежали рядом?

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 4k + 3  бесконечно.

ВверхВниз   Решение


Прямоугольник разрезан на прямоугольники, длина одной из сторон каждого из которых — целое число. Докажите, что длина одной из сторон исходного прямоугольника — целое число.

ВверхВниз   Решение


Дан треугольник ABC, в котором сторона AB больше BC. Проведены биссектрисы AK и CM (K лежит на BC, M лежит на AB). Доказать, что отрезок AM больше MK, а отрезок MK больше KC.

ВверхВниз   Решение


Докажите, что для любого натурального n сумма     лежит в пределах от ½ до ¾.

ВверхВниз   Решение


Равнобедренный треугольник ABC с основанием BC повернули вокруг точки C так, что его вершина A оказалась в точке A1 на прямой BC. При этом вершина B перешла в некоторую точку B1, лежащую с точкой A по одну сторону от прямой BC. Полученный таким образом равнобедренный треугольник A1B1C повернули вокруг точки A1 так, что вершина B1 перешла в точку B2 на прямой BC. При этом вершина C перешла в некоторую точку C2, также лежащую с точкой A по одну сторону от прямой BC. Докажите, что  C2B2 || AC.

ВверхВниз   Решение


Доказать, что
  а) из связного графа можно выкинуть несколько рёбер так, чтобы осталось дерево;
  б) в дереве с n вершинами ровно  n – 1  ребро;
  в) в дереве не меньше двух висячих вершин;
  г) в связном графа из n вершин не меньше  n – 1  ребра;
  д) если в связном графе n вершин и  n – 1  ребро, то он – дерево.

Вверх   Решение

Задача 31098
Темы:    [ Связность и разложение на связные компоненты ]
[ Деревья ]
Сложность: 3
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Доказать, что
  а) из связного графа можно выкинуть несколько рёбер так, чтобы осталось дерево;
  б) в дереве с n вершинами ровно  n – 1  ребро;
  в) в дереве не меньше двух висячих вершин;
  г) в связном графа из n вершин не меньше  n – 1  ребра;
  д) если в связном графе n вершин и  n – 1  ребро, то он – дерево.


Решение

  а) Если граф – не дерево, то в нём есть простой цикл. Любое ребро из этого цикла можно выкинуть без нарушения связности. Этот процесс остановится, когда граф станет деревом.

  б) У дерева есть висячая вершина (см. задачу 30786). Удалим её вместе с ребром, которое из нее выходит. Оставшийся граф также является деревом. Поэтому у него есть висячая вершина, которую мы также удалим вместе с выходящим из нее ребром. Проделав эту операцию  n – 1  раз, мы получим граф, состоящий из одной вершины (в котором, конечно, нет рёбер). Поскольку каждый раз удалялось ровно одно ребро, то сначала их было  n – 1.

  в) Выйдем из висячей вершины и пойдём по графу как в задаче 30786. Так же как и там этот путь закончится в другой висячей вершине.

  г) Удалим из графа несколько вершин, превратив его в дерево. В полученном дереве  n – 1  вершина, а в иcходном – не меньше.

  д) Если это не так, то, превратив его в дерево, мы получим противоречие с п. б).

Источники и прецеденты использования

книга
Автор Иванов С.В.
Название Математический кружок
глава
Номер 5
Название Графы
Тема Теория графов
задача
Номер 30

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .