Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 16 задач
Версия для печати
Убрать все задачи

Пусть Oa, Ob и Oc — центры описанных окружностей треугольников PBC, PCA и PAB. Докажите, что если точки Oa и Ob лежат на прямых PA и PB, то точка Oc лежит на прямой PC.

Вниз   Решение


Найдите объём правильного октаэдра (правильного восьмигранника), ребро которого равно a .

ВверхВниз   Решение


а)  ctg($ \alpha$/2) + ctg($ \beta$/2) + ctg($ \gamma$/2) $ \geq$ 3$ \sqrt{3}$.
б) Для остроугольного треугольника

tg$\displaystyle \alpha$ + tg$\displaystyle \beta$ + tg$\displaystyle \gamma$ $\displaystyle \geq$ 3$\displaystyle \sqrt{3}$.


ВверхВниз   Решение


Ширина реки один километр. Это по определению означает, что от любой точки каждого берега можно доплыть до противоположного берега, проплыв не больше километра. Может ли катер проплыть по реке так, чтобы в любой момент расстояние до любого из берегов было бы не больше:
  а) 700 м?
  б) 800 м?
(Берега состоят из отрезков и дуг окружностей.)

ВверхВниз   Решение


Какое наибольшее число острых углов может встретиться в выпуклом многоугольнике?

ВверхВниз   Решение


В клетках квадрата 3×3 расставлены числа (рис. слева). Разрешается к числам, стоящим в двух соседних клетках, одновременно прибавлять одно и то же число, не обязательно положительное. Можно ли в какой-то момент получить такой квадрат с числами, как на рисунке справа? (Клетки считаются соседними, если имеют общую сторону.)

ВверхВниз   Решение


Избавьтесь от иррациональности в знаменателе:

а) ;     д) ;
б) ;     е) ;
в) ;     ж) .
г) ;  

ВверхВниз   Решение


На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

ВверхВниз   Решение


а) Пусть A, B, C и D — произвольные точки плоскости. Докажите, что ($ \overrightarrow{AB}$,$ \overrightarrow{CD}$) + ($ \overrightarrow{BC}$,$ \overrightarrow{AD}$) + ($ \overrightarrow{CA}$,$ \overrightarrow{BD}$) = 0.
б) Докажите, что высоты треугольника пересекаются в одной точке.

ВверхВниз   Решение


В записи   ¼  ¼  ¼  ¼   расставьте знаки действий и, если нужно, скобки так, чтобы значение получившегося выражения равнялось 2.

ВверхВниз   Решение


Проведите через данную точку P, лежащую внутри угла AOB, прямую MN так, чтобы величина OM + ON была минимальной (точки M и N лежат на сторонах OA и OB).

ВверхВниз   Решение


Расставьте в ряд числа от 1 до 100 так, чтобы любые два соседних отличались по крайней мере на 50.

ВверхВниз   Решение


Каждая боковая грань пирамиды является прямоугольным треугольником, в котором прямой угол примыкает к основанию пирамиды. В пирамиде проведена высота. Может ли она лежать внутри пирамиды?

ВверхВниз   Решение


Илья Муромец встречает трёхголового Змея Горыныча. Каждую минуту Илья отрубает одну голову Змею. Пусть x – живучесть Змея  (x > 0).  Вероятность ps того, что на месте отрубленной головы вырастет s новых голов  (s = 0, 1, 2),  равна    В течение первых 10 минут сражения Илья записывал, сколько голов вырастало на месте каждой срубленной. Получился следующий вектор:  K = (1, 2, 2, 1, 0, 2, 1, 0, 1, 2).  Найдите такое значение живучести Змея, при котором вероятность вектора K наибольшая.

ВверхВниз   Решение


Хорда делит окружность в отношении 11 : 16. Найдите угол между касательными, проведёнными из концов этой хорды.

ВверхВниз   Решение


Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.

Вверх   Решение

Задача 35243
Темы:    [ Длины сторон (неравенства) ]
[ Окружности (прочее) ]
[ Окружности (построения) ]
Сложность: 3+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Через две точки, лежащие в круге, провести окружность, лежащую целиком в том же круге.

Подсказка

Центр такой окружности можно выбрать на одном из отрезков, соединяющих данные точки с центром круга.

Решение

Соединим данные точки A и B с центром данного круга O и проведем серединный перпендикуляр отрезка AB до пересечения с одной из сторон OA или OB в точке O'. Пусть для определенности O' лежит на OB. Окружность с центром в точке O' и радиусом O'B будет искомой. Для доказательства этого возьмем любую точку C на этой окружности и рассмотрим треугольник OO'C. В этом треугольнике OC не больше OO'+O'C=OO'+O'B=OB (по неравенству треугольника), а OB не превосходит радиуса первоначального круга.

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .