Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Существует ли такой выпуклый 1976-гранник, который обладал бы следующим свойством: при произвольной расстановке стрелок на концах его рёбер сумма полученных векторов отлична от 0?

Вниз   Решение


Доказать, что при любом целом положительном n сумма     больше ½.

ВверхВниз   Решение


Найдите радиус наибольшей окружности, касающейся изнутри двух пересекающихся окружностей с радиусами R и r, если расстояние между их центрами равно a
(a < R + r).

ВверхВниз   Решение


Докажите, что множество простых чисел вида  p = 6k + 5  бесконечно.

ВверхВниз   Решение


Дан многочлен с целыми коэффициентами. В трёх целых точках он принимает значение 2.
Доказать, что ни в какой целой точке он не принимает значение 3.

ВверхВниз   Решение


В круге с центром O проведена хорда AB. Вычислите площадь получившегося сегмента, если  ∠AOB = α,  а радиус круга равен r.

ВверхВниз   Решение


Существует ли такое натуральное число n, что сумма цифр числа n2 равна 100?

ВверхВниз   Решение


Доказать, что число 100...001, в котором  21974 + 21000 – 1  нулей, составное.

ВверхВниз   Решение


В треугольнике ABC проведены медианы AD и BE. Углы CAD и CBE равны 30o. Доказать, что треугольник ABC правильный.

ВверхВниз   Решение


К двум окружностям, касающимся извне, проведены общие внешние касательные и точки касания соединены между собой. Доказать, что в полученном четырёхугольнике суммы противоположных сторон равны.

ВверхВниз   Решение


Решить в целых числах уравнение  x + y = x² – xy + y².

ВверхВниз   Решение


Имеется 1000 монет, среди них 0, 1 или 2 фальшивые. Известно, что фальшивые монеты имеют одинаковую массу, отличную от массы нефальшивых монет. Можно ли за три взвешивания на чашечных весах без гирь определить, есть ли фальшивые монеты и легче они или тяжелее нормальных? (Количество монет определять не надо.)

ВверхВниз   Решение


Доказать, что в десятичной записи чисел  2n + 1974n и 1974n  содержится одинаковое количество цифр.

ВверхВниз   Решение


Дискриминанты трёх приведённых квадратных трёхчленов равны 1, 4 и 9.
Докажите, что можно выбрать по одному корню каждого из них так, чтобы их сумма равнялась сумме оставшихся корней.

ВверхВниз   Решение


Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.

Вверх   Решение

Задача 53975
Темы:    [ Построение треугольников по различным элементам ]
[ Признаки и свойства касательной ]
Сложность: 3-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Постройте треугольник, если известны отрезки, на которые вписанная окружность делит его сторону, и радиус вписанной окружности.


Подсказка

Центр вписанной окружности треугольника лежит на перпендикуляре к стороне треугольника, проведённом через точку касания.


Решение

Предположим, что искомый треугольник ABC построен. Пусть O — центр вписанной в него окружности, M — точка касания со стороной BC. Поскольку радиус, проведённый в точку касания, перпендикулярен касательной, точка O лежит на перпендикуляре к BC, проведённом через точку M. Отсюда вытекает следующее построение.

Проведём произвольную прямую. Возьмём на ней произвольную точку M. По разные стороны от этой точки отложим отрезки MB и MC, равные данным. Через точку M проведём прямую, перпендикулярную BC. На ней отложим отрезок MO, равный данному радиусу, и построим окружность с центром O и радиусом OM. Через точки B и C проведём касательные к этим окружностям. Они пересекутся в вершине A искомого треугольника.

Если хотя бы один из данных отрезков больше данного радиуса, задача имеет единственное решение. В остальных случаях решений нет.

Источники и прецеденты использования

web-сайт
Название Система задач по геометрии Р.К.Гордина
URL http://zadachi.mccme.ru
задача
Номер 1739

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .