Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Муравей ползает по проволочному каркасу куба, при этом он никогда не поворачивает назад.
Может ли случиться, что в одной вершине он побывал 25 раз, а в каждой из остальных – по 20 раз?

Вниз   Решение


Пять моряков высадились на остров и к вечеру набрали кучу кокосовых орехов. Дележ отложили на утро. Один из них, проснувшись ночью, угостил одним орехом мартышку, а из остальных орехов взял себе точно пятую часть, после чего лёг спать и быстро уснул. За ночь так же поступили один за другим и остальные моряки; при этом каждый не знал о действиях предшественников. На утро они поделили оставшиеся орехи поровну, но для мартышки в этот раз лишнего ореха не осталось. Каким могло быть наименьшее число орехов в собранной куче?

ВверхВниз   Решение


Докажите, что последовательность  an = 1 + 17n²  (n ≥ 0)  содержит бесконечно много квадратов целых чисел.

ВверхВниз   Решение


В пространстве даны параллелограмм ABCD и плоскость M. Расстояния от точек A, B и C до плоскости M равны соответственно a, b и c.
Найти расстояние d от вершины D до плоскости M.

ВверхВниз   Решение


Докажите, что для любого числа p > 2 найдется такое число $ \beta$, что

$\displaystyle \underbrace{\sqrt{2+\sqrt{2+\ldots+\sqrt{2+
\sqrt{2+p}}}}}_{n~\mbox{\scriptsize {радикалов}}}^{}\,$ = $\displaystyle \beta^{2^n}_{}$ - $\displaystyle \beta^{-2^n}_{}$.


ВверхВниз   Решение


Пусть характеристическое уравнение (11.3 ) последовательности (11.2) имеет комплексные корни x1, 2 = a±ib = re±i$\scriptstyle \varphi$. Докажите, что для некоторой пары чисел c1, c2 будет выполняться равенство

an = rn(c1cos n$\displaystyle \varphi$ + c2sin n$\displaystyle \varphi$).


ВверхВниз   Решение


Рассматривается выпуклый восьмиугольник. С помощью диагонали от него можно отрезать четырёхугольник, причём это можно сделать восемью способами. Может ли случиться, что среди этих восьми четырёхугольников имеется
  а) четыре,
  б) пять
таких, в которые можно вписать окружность?

ВверхВниз   Решение


Автор: Фольклор

Докажите, что при любом a имеет место неравенство:   3(1 + a² + a4) ≥ (1 + a + a²)².

ВверхВниз   Решение


Садовник, привив черенок редкого растения, оставляет его расти два года, а затем ежегодно берет от него по 6 черенков. С каждым новым черенком он поступает аналогично. Сколько будет растений и черенков на n-ом году роста первоначального растения?

ВверхВниз   Решение


Найдите у чисел   а)  (6 + )1999;   б)  (6 + )1999;   в)  (6 + )2000   первые 1000 знаков после запятой.

ВверхВниз   Решение


Автор: Фольклор

Какое максимальное число шашек можно расставить на доске 8×8 так, чтобы каждая была под боем?

ВверхВниз   Решение


Составьте уравнение плоскости, проходящей через середину отрезка с концами в точках P(-1;2;5) и Q(3;-4;1) перпендикулярно прямой, проходящей через точки A(0;-2;-1) и B(3;2;-1) .

ВверхВниз   Решение


Пусть  a0, a1, ..., an, ... – периодическая последовательность, то есть для некоторого натурального T   an+T = an  (n ≥ 0).  Докажите, что
  а) среди всех периодов этой последовательности существует период наименьшей длины t;
  б) T делится на t.

ВверхВниз   Решение


Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что  AE : CF = AO : CO.

Вверх   Решение

Задача 56532
Темы:    [ Трапеции (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 4-
Классы: 8,9
Из корзины
Прислать комментарий

Условие

Продолжения боковых сторон трапеции с основаниями AD и BC пересекаются в точке O. Концы отрезка EF, параллельного основаниям и проходящего через точку пересечения диагоналей, лежат соответственно на сторонах AB и CD. Докажите, что  AE : CF = AO : CO.


Решение

Пусть  AD = a,  BC = b  и  a > b.  Согласно задаче 53748  EF = 2ab/a+b.  Из подобия треугольников AOD, BOC и EOF получаем, что     что и требовалось.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 1
Название Подобные треугольники
Тема Подобные треугольники
параграф
Номер 7
Название Задачи для самостоятельного решения
Тема Подобные треугольники (прочее)
задача
Номер 01.076

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .