Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Высота пирамиды равна 5, а основанием служит треугольник со сторонами 7, 8 и 9. Некоторая сфера касается плоскостей всех боковых граней пирамиды в точках, лежащих на сторонах основания. Найдите радиус сферы.

Вниз   Решение


  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

ВверхВниз   Решение


AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1.

ВверхВниз   Решение


Решите уравнение $$ x^3+(\log_25+\log_32+\log_53) x=(\log_23+\log_35+\log_52) x^2+1. $$

ВверхВниз   Решение


По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk:

xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+jp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.

ВверхВниз   Решение


Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Будем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

ВверхВниз   Решение


В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

ВверхВниз   Решение


Основания AD и BC трапеции ABCD равны a и b  (a > b).
  а) Найдите длину отрезка, высекаемого диагоналями на средней линии.
  б) Найдите длину отрезка MN, концы которого делят стороны AB и CD в отношении  AM : MB = DN : NC = p : q.

ВверхВниз   Решение


В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.

ВверхВниз   Решение


Автор: Фольклор

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

ВверхВниз   Решение


Автор: Анджанс А.

Рассматривается конечное множество M единичных квадратов на плоскости. Их стороны параллельны осям координат (разрешается, чтобы квадраты пересекались). Известно, что для любой пары квадратов расстояние между их центрами не больше 2. Докажите, что существует единичный квадрат (не обязательно из множества M) со сторонами, параллельными осям, пересекающийся хотя бы по точке с каждым квадратом множества M.

ВверхВниз   Решение


Докажите, что любой n-угольник можно разрезать на треугольники непересекающимися диагоналями.

Вверх   Решение

Задача 58152
Тема:    [ Невыпуклые многоугольники ]
Сложность: 5
Классы: 9,10
Из корзины
Прислать комментарий

Условие

Докажите, что любой n-угольник можно разрезать на треугольники непересекающимися диагоналями.

Решение

Докажем это утверждение индукцией по n. При n = 3 оно очевидно. Предположим, что утверждение доказано для всех k-угольников, где k < n, и докажем его для любого n-угольника. Любой n-угольник можно разрезать диагональю на два многоугольника (см. задачу 22.20, а)), причем число вершин у каждого из них строго меньше n, т. е. их можно разрезать на треугольники по предположению индукции.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 22
Название Выпуклые и невыпуклые многоугольники
Тема Выпуклые и невыпуклые фигуры
параграф
Номер 6
Название Невыпуклые многоугольники
Тема Невыпуклые многоугольники
задача
Номер 22.022

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .