Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

На бесконечном листе клетчатой бумаги N клеток окрашено в черный цвет. Докажите, что из этого листа можно вырезать конечное число квадратов так, что будут выполняться два условия: 1) все черные клетки лежат в вырезанных квадратах; 2) в любом вырезанном квадрате K площадь черных клеток составит не менее  1/5 и не более  4/5 площади K.

Вниз   Решение


Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.

ВверхВниз   Решение


Докажите, что площадь любого выпуклого четырехугольника не превосходит полусуммы произведений противоположных сторон.

ВверхВниз   Решение


Дано число: 123456789101112... . Какая цифра стоит на 2000-м месте?

ВверхВниз   Решение


На биссектрисе внешнего угла C треугольника ABC взята точка M, отличная от C. Докажите, что MA + MB > CA + CB.

ВверхВниз   Решение


На плоскости взяты шесть точек A1, A2, A3, B1, B2, B3. Докажите, что если описанные окружности треугольников A1A2B3, A1B2A3 и B1A2A3 проходят через одну точку, то и описанные окружности треугольников B1B2A3, B1A2B3 и A1B2B3 пересекаются в одной точке.

ВверхВниз   Решение


Докажите, что если  ctg($ \alpha$/2) = (b + c)/a, то треугольник прямоугольный.

ВверхВниз   Решение


Даны четыре окружности, причем окружности S1 и S3 пересекаются с обеими окружностями S2 и S4. Докажите, что если точки пересечения S1 с S2 и S3 с S4 лежат на одной окружности или прямой, то и точки пересечения S1 с S4 и S2 с S3 лежат на одной окружности или прямой (рис.).


ВверхВниз   Решение


Докажите, что две несовпадающие коники имеют не более четырех общих точек.

ВверхВниз   Решение


Докажите, что для любого n существует окружность, внутри которой лежит ровно n целочисленных точек.

ВверхВниз   Решение


ABC - прямоугольный треугольник с прямым углом C. Докажите, что a + b < c + hc.

ВверхВниз   Решение


Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.


Вверх   Решение

Задача 58351
Темы:    [ Точки, лежащие на одной окружности, и окружности, проходящие через одну точку ]
[ Инверсия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
[ Пятиугольники ]
Сложность: 6
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Стороны выпуклого пятиугольника ABCDE продолжили так, что образовалась пятиконечная звезда AHBKCLDMEN (рис.). Около треугольников — лучей звезды описали окружности. Докажите, что пять точек пересечения этих окружностей, отличных от A, B, C, D, E, лежат на одной окружности.



Решение

Пусть P, Q, R, S, T — точки пересечения окружностей S1, S2, S3, S4, S5, о которых говорится в условии (см. рис.). Докажем, например, что точки P, Q, R, S лежат на одной окружности. Проведем окружность $ \Sigma$, описанную около треугольника NKD. Применяя результат задачи 2.83, а) (совпадающей с 19.45) к четырехугольникам AKDE и BNDC, получаем, что окружности S4, S5 и $ \Sigma$ пересекаются в одной точке (в точке P) и окружности S2, S3, $ \Sigma$ тоже пересекаются в одной точке (в точке S). Следовательно, окружность $ \Sigma$ проходит через точки P и S. Заметим теперь, что из восьми точек пересечения окружностей $ \Sigma$, S1, S2, S5 четыре, а именно N, A, B, K лежат на одной прямой. Следовательно, согласно задаче 28.31 оставшиеся четыре точки P, Q, R, S лежат на одной окружности.

Источники и прецеденты использования

книга
Автор Прасолов В.В.
Год издания 2001
Название Задачи по планиметрии
Издательство МЦНМО
Издание 4*
глава
Номер 28
Название Инверсия
Тема Инверсия
параграф
Номер 5
Название Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
Тема Точки, лежащие на одной окружности, и окружности, проходящие через одну точку
задача
Номер 28.032

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .