ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Одна из диагоналей вписанного в окружность четырёхугольника является диаметром. В треугольнике ABC угол A прямой, катет AB равен a, радиус вписанной окружности равен r . Вписанная окружность касается катета AC в точке D.
На хорде AB окружности K с центром в точке O взята точка C. D —
вторая точка пересечения окружности K с окружностью, описанной около
В треугольнике DEF проведена медиана DK. Найдите углы треугольника, если ∠KDE = 70°, ∠DKF = 140°. Один раз рыбак забросил в пруд сеть и вытащил 30 рыб. Пометив каждую рыбу меткой, он выпустил улов обратно в пруд. На следующий день рыбак снова забросил сеть и вытащил 40 рыб, среди которых были две помеченные. Как по этим данным приблизительно вычислить число рыб в пруду? Прямая, параллельная основанию треугольника, делит его на части, площади которых относятся как 2 : 1, считая от вершины. В каком отношении она делит боковые стороны? С числом 123456789101112...9989991000 производится следующая операция: зачёркиваются две соседние цифры a и b (a стоит перед b) и на их место вставляется число a + 2b (можно в качестве a взять нуль, ``стоящий'' перед числом, а в качестве b — первую цифру числа). С полученным числом производится такая же операция и т.д. (Например, из числа 118 307 можно на первом шаге получить числа 218 307, 38 307, 117 307, 111 407, 11 837, 118 314.) Доказать, что таким способом можно получить число 1. В треугольнике ABC проведены медианы AM и BP. Известно, что ∠APB = ∠BMA, cos∠ACB = 0,8, BP = 1. Найдите площадь треугольника ABC . Сеня не умеет писать некоторые буквы и всегда в них ошибается. В слове ТЕТРАЭДР он сделал бы пять ошибок, в слове ДОДЕКАЭДР – шесть, а в слове ИКОСАЭДР – семь. А сколько ошибок он сделает в слове ОКТАЭДР? Докажите, что через данную точку можно провести единственную плоскость, перпендикулярную данной прямой. Катеты AC и CB прямоугольного треугольника ABC равны 15 и 8 соответственно. Из центра C радиусом CB описана дуга, отсекающая от гипотенузы часть BD. Найдите BD. Найдите остаток от деления многочлена P(x) = x81 + x27 + x9 + x³ + x на Отрезки AB и CD пересекаются под прямым углом и AC = AD. Докажите, что BC = BD и ∠ACB = ∠ADB. Многочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. |
Задача 60971
УсловиеМногочлен P(x) дает остаток 2 при делении на x – 1, и остаток 1 при делении на x – 2. РешениеПусть P(x) = (x – 1)(x – 2)Q(x) + ax + b. По теореме Безу a + b = P(1) = 2, 2a + b = P(2) = 1, откуда a = –1, b = 3. Ответ3 – x. Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке