ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам. Среди всех многоугольников, вписанных в данную окружность, найдите тот,
у которого максимальна сумма квадратов длин сторон.
На отрезке AC взята точка B и на отрезках AB,
BC, CA построены полуокружности S1, S2, S3 по одну сторону
от AC. D — такая точка на S3, что
BD На шахматной доске 8×8 отмечены центры всех полей. Можно ли тринадцатью прямыми, не проходящими через эти центры, разбить доску на части так, чтобы внутри каждой из них лежало не более одной отмеченной точки? На плоскости дано 25 точек, причем среди любых
трех из них найдутся две на расстоянии меньше 1. Докажите,
что существует круг радиуса 1, содержащий не меньше 13 из этих точек.
Постройте четырехугольник ABCD, в который можно
вписать окружность, зная длины двух соседних сторон AB
и AD и углы при вершинах B и D.
По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков? В треугольнике ABC высота AM не меньше BC, а
высота BH не меньше AC. Найдите углы треугольника ABC.
Окружность S касается равных сторон AB и BC
равнобедренного треугольника ABC в точках P и K, а также
касается внутренним образом описанной окружности треугольника ABC.
Докажите, что середина отрезка PK является
центром вписанной окружности треугольника ABC.
Какую фигуру образует множество всех вершин равнобедренных треугольников, имеющих общее основание?
Пользуясь равенством $\lg11=1{,}0413\ldots$, найдите наименьшее число $n>1$, для которого среди $n$-значных чисел нет ни одного, равного некоторой натуральной степени числа 11. Через середину отрезка AB проведена прямая, перпендикулярная прямой AB. Докажите, что каждая точка этой прямой одинаково удалена от точек A и B. Какое наибольшее число точек самопересечения может иметь замкнутая 14-звенная ломаная, проходящая по линиям клетчатой бумаги так, что ни на какой линии не лежит более одного звена ломаной? В остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника. |
Задача 65937
УсловиеВ остроугольном неравностороннем треугольнике отметили четыре точки: центры вписанной и описанной окружностей, точку пересечения медиан и ортоцентр. Затем сам треугольник стерли. Оказалось, что невозможно установить, какому центру соответствует каждая из отмеченных точек. Найдите углы треугольника. РешениеПусть АВС – исходный треугольник, А1, В1, С1 – середины сторон ВС, СА, АВ соответственно. Так как треугольники АВС и А1В1С1 гомотетичны относительно точки М пересечения медиан (с коэффициентом −½), а центр О описанной окружности треугольника АВС является ортоцентром треугольника А1В1С1, то точка М лежит на отрезке ОН (Н – ортоцентр треугольника АВС) и НМ = 2МО. Итак, I лежит на прямой Эйлера. Так как ∠OBA = ∠HBC = π/2 – ∠C, BI является биссектрисой угла НВО. Следовательно, точка I лежит на отрезке ОН, причём OI = 2IH (иначе роль точек устанавливается однозначно). По свойству биссектрисы получаем, что ВО = 2ВН. Аналогично АО = 2АН. Таким образом, AH = BH = R/2, где R – радиус описанной окружности треугольника АВС. Из гомотетии, указанной выше, следует также, что АH = 2OA1 (и эти отрезки параллельны). Кроме того, ОА1 = R cos A (так как ∠OBA1 = ½ ∠BOC = ∠A). Поэтому R/2 = АН = 2R cos A ⇒ cos A = ¼. Точно так же доказывается, что cos B = ¼. Ответarсcos ¼, arсcos ¼, π – 2 arсcos ¼. Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке