Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 15 задач
Версия для печати
Убрать все задачи

Найдите все такие натуральные числа m, что произведение факториалов первых m нечётных натуральных чисел равно факториалу суммы первых m натуральных чисел.

Вниз   Решение


а) 100 гирек веса 1, 2, ..., 100 г разложили на две чаши весов так, что есть равновесие.
Докажите, что можно убрать по две гирьки с каждой чаши так, что равновесие не нарушится.

б) Рассмотрим такие n, что набор гирь 1, 2, ... , n г можно разделить на две части, равные по весу.
Верно ли, что для любого такого n, большего 3, можно убрать по две гирьки из каждой части так, что равенство весов сохранится?

ВверхВниз   Решение


Существуют ли такие
  а) 4 различных натуральных числа;
  б) 5 различных натуральных чисел;
  в) 5 различных целых чисел;
  г) 6 различных целых чисел,
что сумма каждых трёх из них – простое число?

ВверхВниз   Решение


Докажите, что если  $ {\frac{1}{b}}$ + $ {\frac{1}{c}}$ = $ {\frac{1}{l_a}}$, то  $ \angle$A = 120o.

ВверхВниз   Решение


Докажите, что  a1a2...an–1an  ≡  an–1an (mod 4).

ВверхВниз   Решение


Прямая касается окружности с центром O в точке A. Точка C на этой прямой и точка D на окружности расположены по разные стороны от прямой OA. Найдите угол CAD, если угол AOD равен 110o.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Через точку K первой окружности проводятся прямые KA и KB, вторично пересекающие другую окружность в точках P и Q соответственно. Докажите, что хорда PQ окружности перпендикулярна диаметру KM первой окружности.

ВверхВниз   Решение


Соедините точки А и В (см. рисунок) ломаной из четырёх отрезков одинаковой длины так, чтобы выполнялись следующие условия:
  1) концами отрезков могут быть только какие-то из отмеченных точек;
  2) внутри отрезков не должно быть отмеченных точек;
  3) соседние отрезки не должны лежать на одной прямой.

ВверхВниз   Решение


Во время стоянки между двумя рейсами матросу исполнилось 20 лет. По этому случаю в кают-компании собрались все шесть членов команды.
– Я вдвое старше юнги и на 6 лет старше машиниста, – сказал рулевой.
– А я на столько же старше юнги, на сколько моложе машиниста, – заметил боцман. – Кроме того, я на 4 года старше матроса.
– Средний возраст команды – 28 лет, – дал справку капитан.
Сколько лет капитану?

ВверхВниз   Решение


Прямая, параллельная основаниям трапеции, разбивает её на две подобные трапеции.
Найдите отрезок этой прямой, заключённый внутри трапеции, если основания равны a и b.

ВверхВниз   Решение


Секущая ABC отсекает дугу BC, содержащую 112°; касательная AD точкой касания D делит эту дугу в отношении  7 : 9.  Найдите  ∠BAD.

ВверхВниз   Решение


У марсиан бывает произвольное число рук. Однажды все марсиане взялись за руки так, что свободных рук не осталось.
Докажите, что число марсиан, у которых нечётное число рук, чётно.

ВверхВниз   Решение


Какова угловая величина дуги, если радиус, проведённый в её конец, составляет с её хордой угол в 40°?

ВверхВниз   Решение


Расставьте в вершинах пятиугольника действительные числа так, чтобы сумма чисел на концах некоторой стороны была равна 1, на концах некоторой другой стороны была равна 2, ..., на концах последней стороны – равна 5.

ВверхВниз   Решение


Автор: Фольклор

Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.). На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.

Вверх   Решение

Задача 66765
Темы:    [ Перегруппировка площадей ]
[ Площадь круга, сектора и сегмента ]
Сложность: 3
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

Никита нарисовал и закрасил выпуклый пятиугольник с периметром $20$ и площадью $21$. Таня закрасила все точки, находящиеся на расстоянии не более $1$ от закрашенных Никитой (см. рис.). На сколько увеличилась закрашенная площадь? Ответ округлите до сотых.


Решение

Разобьем добавленную Таней площадь на пять прямоугольников ширины $1$, у каждого из которых одна из сторон совпадает со стороной исходного пятиугольника, и на сектора кругов радиуса $1$ с вершинами в вершинах пятиугольника (см. рис).

Добавленная площадь равна сумме площадей прямоугольников и площадей секторов. Сумма площадей прямоугольников равна произведению ширины (равной $1$) на сумму длин сторон пятиугольника: $1\cdot 20$. Сектора же складываются в один полный круг, площадь которого равна $\pi\cdot 1^2$. То есть добавленная площадь составляет $20 + \pi \approx 23{,}14$.

Ответ

$23{,}14$.

Замечания

Объяснить, почему сектора действительно складываются в полный круг, можно следующим образом. У двух соседних секторов два ограничивающих радиуса являются противоположными сторонами прямоугольника. Значит, если «схлопнуть» прямоугольник, сторонами которого они являются, то два соседних сектора объединятся в один сектор. Сделав так с каждой парой, мы получим целый круг.

Приведенное рассуждение справедливо для любого выпуклого многоугольника. Угол сектора равен соответствующему внешнему углу многоугольника, так что по сути мы доказали, что сумма внешних углов выпуклого многоугольника равна $360^\circ$ (см. по этому поводу также Математические Этюды).

Аналогичная формула для площади «окрестности» верна для произвольных ограниченных выпуклых фигур. Об этой теореме Штейнера можно прочитать в статье Л.В. Локуциевского и В.М. Тихомирова «Выпуклый анализ на плоскости» (журнал «Квант», 2018 г., №№5-6).

Источники и прецеденты использования

олимпиада
Название Турнир им.Ломоносова
номер/год
Год 2021
задача
Номер 7

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .