Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Для любых чисел a1 и a2, удовлетворяющих условиям  a1 ≥ 0,  a2 ≥ 0,  a1 + a2 = 1,  можно найти такие числа b1 и b2, что  b1 ≥ 0,  b2 ≥ 0,  b1 + b2 = 1,
(5/4a1)b1 + 3(5/4a2)b2 > 1.  Доказать.

Вниз   Решение


Дано 8 действительных чисел: a, b, c, d, e, f, g, h. Доказать, что хотя бы одно из шести чисел  ac + bd,  ae + bf,  ag + bh,  ce + df,  cg + dh,  eg + fh  неотрицательно.

ВверхВниз   Решение


Автор: Белухов Н.

Даны выпуклый многоугольник $M$ и простое число $p$. Оказалось, что существует ровно $p$ способов разбить $M$ на равносторонние треугольники со стороной 1 и квадраты со стороной 1.
Докажите, что длина одной из сторон многоугольника $M$ равна  $p$ – 1.

ВверхВниз   Решение


На каждом борту лодки должно сидеть по четыре человека. Сколькими способами можно выбрать команду для этой лодки, если есть 31 кандидат, причём десять человек хотят сидеть на левом борту лодки, двенадцать – на правом, а девяти безразлично где сидеть?

ВверхВниз   Решение


На листе бумаги отмечены точки A, B, C, D. Распознающее устройство может абсолютно точно выполнять два типа операций: а) измерять в сантиметрах расстояние между двумя заданными точками; б) сравнивать два заданных числа. Какое наименьшее число операций нужно выполнить этому устройству, чтобы наверняка определить, является ли четырёхугольник ABCD квадратом?

ВверхВниз   Решение


Автор: Анджанс А.

Число рёбер многогранника равно 100.
  а) Какое наибольшее число рёбер может пересечь плоскость, не проходящая через его вершины, если многогранник выпуклый?
  б) Докажите, что для невыпуклого многогранника это число может равняться 96,
  в) но не может равняться 100.

ВверхВниз   Решение


Пусть x, y, z – положительные числа и  xyz(x + y + z) = 1.  Найдите наименьшее значение выражения  (x + y)(x + z).

ВверхВниз   Решение


Решите уравнения при 0o < x < 90o:

a) $ \sqrt{13-12\cos x}$ + $ \sqrt{7-4\sqrt3\sin x}$ = 2$ \sqrt{3}$;

б) $ \sqrt{2-2\cos x}$ + $ \sqrt{10-6\cos x}$ = $ \sqrt{10-6\cos 2x}$;

в) $ \sqrt{5-4\cos x}$ + $ \sqrt{13-12\sin
x}$ = $ \sqrt{10}$.

ВверхВниз   Решение


Докажите равенство:

arctg 1 + arctg $\displaystyle {\textstyle\dfrac{1}{2}}$ + arctg $\displaystyle {\textstyle\dfrac{1}{3}}$ = $\displaystyle {\dfrac{\pi}{2}}$.


ВверхВниз   Решение


Решить уравнение  x³ – [x] = 3.

ВверхВниз   Решение


Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

ВверхВниз   Решение


На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?

Вверх   Решение

Задача 67054
Темы:    [ Четность и нечетность ]
[ Теория игр (прочее) ]
Сложность: 4+
Классы: 8,9,10,11
Из корзины
Прислать комментарий

Условие

На столе в ряд лежат 20 плюшек с сахаром и 20 с корицей в произвольном порядке. Малыш и Карлсон берут их по очереди, начинает Малыш. За ход можно взять одну плюшку с любого края. Малыш хочет, чтобы ему в итоге досталось по десять плюшек каждого вида, а Карлсон пытается ему помешать. При любом ли начальном расположении плюшек Малыш может достичь своей цели, как бы ни действовал Карлсон?


Решение

  Пронумеруем плюшки в ряду числами от 1 до 40. Заметим, что у Малыша всегда есть возможность взять плюшку с номером любой чётности, а после каждого его хода Карлсон вынужден брать плюшку с номером другой чётности.
  Пусть среди плюшек с нечётными номерами не меньше десяти с сахаром (если с корицей, то рассуждения аналогичны). Тогда Малыш начинает с того, что берёт плюшки с нечётными номерами и после каждого хода Карлсона вычисляет такую величину: количество полученных плюшек с сахаром + количество оставшихся на столе плюшек с сахаром с чётными номерами. В начальный момент эта величина не больше 10, а если Малыш будет брать плюшки только с нечётными номерами, то в конце она будет не меньше 10. При этом после каждой пары ходов Малыша и Карлсона эта величина изменяется не более чем на 1. Следовательно, в какой-то момент (возможно, начальный) она будет равна 10. После этого Малыш может брать только плюшки с чётными номерами и в итоге получит ровно 10 плюшек с сахаром, а значит, и 10 плюшек с корицей, что и требуется.


Ответ

При любом.

Замечания

  1. Верно более общее утверждение: если в ряд лежит чётное число плюшек, и из них на нечётных местах ровно $L$ с сахаром, а на чётных – ровно $R$ с сахаром, то для всякого $k$ между (нестрого) числами $R$ и $L$ Малыш может действовать так, чтобы взять ровно $k$ плюшек с сахаром.
  Для решения исходной задачи достаточно доказать это утверждение, ибо в нашем случае  $R + L = 20$  и одно из чисел не меньше 10, а другое не больше 10.
  Индукция по количеству плюшек. Если их две, утверждение очевидно.
  Шаг индукции. Покрасим плюшки в шахматном порядке так, чтобы нечётные стали белыми. Если  $k = L$,  то Малышу достаточно каждым ходом есть белую плюшку, если  $k = R$  – чёрную. Если же $k$ заключено строго между $L$ и $R$, то Малыш может сделать первый ход произвольно, а далее добиться своего по предположению индукции. В самом деле, не умаляя общности,  $L < k < R$,  тогда белых плюшек с сахаром останется либо $L$, либо  $L$ – 1 , чёрных – либо $R$, либо  $R$ – 1,  а Малышу далее надо взять либо $k$, либо  $k$ – 1  плюшку с сахаром, причём  $L -1 < L \leqslant k - 1 < k \leqslant R - 1 < R$.

2. 12 баллов.

Источники и прецеденты использования

олимпиада
Название Турнир городов
год/номер
Номер 43
Дата 2021/22
вариант
Вариант осенний тур, сложный вариант, 8-9 класс
задача
Номер 7
олимпиада
Название Турнир городов
год/номер
Номер 43
Дата 2021/22
вариант
Вариант осенний тур, сложный вариант, 10-11 класс
задача
Номер 6

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .