Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 13 задач
Версия для печати
Убрать все задачи

Квадрат разрезали на n прямоугольников размером  ai×bii = 1, ..., n.
При каком наименьшем n в наборе  {a1, b1, ..., an, bn}  все числа могут оказаться различными?

Вниз   Решение


На сторонах BC и CD параллелограмма ABCD взяты точки K и L так, что BK : KC = CL : LD. Докажите, что центр масс треугольника AKL лежит на диагонали BD.

ВверхВниз   Решение


Даны точки A1,..., An. Рассмотрим окружность радиуса R, содержащую некоторые из них. Построим затем окружность радиуса R с центром в центре масс точек, лежащих внутри первой окружности, и т. д. Докажите, что этот процесс остановится, т. е. окружности начнут совпадать.

ВверхВниз   Решение


Пусть $A_{1}$, $B_{1}$, $C_{1}$ – основания высот остроугольного треугольника $ABC$. Окружность, вписанная в треугольник $A_{1}B_{1}C_{1}$, касается сторон $A_{1}B_{1}, A_{1}C_{1}, B_{1}C_{1}$ в точках $C_{2}, B_{2}, A_{2}$. Докажите, что прямые $AA_{2}, BB_{2}, CC_{2}$ пересекаются в одной точке, лежащей на прямой Эйлера треугольника $ABC$.

ВверхВниз   Решение


Выпуклый многоугольник разрезан на p треугольников так, что на их сторонах нет вершин других треугольников. Пусть n и m — количества вершин этих треугольников, лежащих на границе исходного многоугольника и внутри его.
а) Докажите, что p = n + 2m - 2.
б) Докажите, что количество отрезков, являющихся сторонами полученных треугольников, равно 2n + 3m - 3.

ВверхВниз   Решение


Докажите, что если точку отразить симметрично относительно точек O1, O2 и O3, а затем еще раз отразить симметрично относительно этих же точек, то она вернется на место.

ВверхВниз   Решение


Периметр выпуклого четырехугольника равен 4. Докажите, что его площадь не превосходит 1.

ВверхВниз   Решение


Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.

ВверхВниз   Решение


На встречу выпускников пришло 45 человек. Оказалось, что любые двое из них, имеющие одинаковое число знакомых среди пришедших, не знакомы друг с другом. Какое наибольшее число пар знакомых могло быть среди участвовавших во встрече?

ВверхВниз   Решение


Пусть O, I – центры описанной и вписанной окружностей прямоугольного треугольника; R, r – радиусы этих окружностей; J – точка, симметричная вершине прямого угла относительно I. Найдите OJ.

ВверхВниз   Решение


Когда  4p³ + 27q² < 0,  уравнение  x³ + px + q = 0  имеет три действительных корня (неприводимый случай кубического уравнения), но для того, чтобы их найти по формуле Кардано, необходимо использование комплексных чисел. Однако можно указать все три корня в явном виде через тригонометрические функции.
  а) Докажите, что при  p < 0  уравнение  x³ + px + q = 0  заменой  x = kt  сводится к уравнению  4t³ – 3t – r = 0   (*)  от переменной t.
  б) Докажите, что при  4p³ + 27q² ≤ 0  решениями уравнения (*) будут числа  t1 = cos,   t2 = cos,   t3 = cos,  где  φ = arccos r.

ВверхВниз   Решение


В остроугольном треугольнике $ABC$ точка $O$ – центр описанной окружности. Точка $B_1$ симметрична точке $B$ относительно стороны $AC$. Прямые $AO$ и $B_1C$ пересекаются в точке $K$. Докажите, что луч $KA$ является биссектрисой угла $BKB_1$.

ВверхВниз   Решение


Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.

Вверх   Решение

Задача 67228
Темы:    [ Кривые второго порядка ]
[ Три точки, лежащие на одной прямой ]
Сложность: 5
Классы: 9,10,11
Из корзины
Прислать комментарий

Условие

Эллипс $\Gamma_1$ c фокусами в серединах сторон $AB$ и $AC$ треугольника $ABC$ проходит через вершину $A$, а эллипс $\Gamma_2$ c фокусами в серединах сторон $AC$ и $BC$ проходит через вершину $C$. Докажите, что точки пересечения этих эллипсов и ортоцентр треугольника $ABC$ лежат на одной прямой.

Решение

Пусть $B_0$ – середина $AC$. Директрисы $d_1$, $d_2$ эллипсов $\Gamma_1$, $\Gamma_2$, соответствующие фокусу $B_0$, параллельны его высотам $AH$, $CH$. Следовательно, расстояния от $H$ до $d_1$ и $d_2$ равны расстояниям до этих прямых от точек $A$ и $C$ соответственно. Поскольку $AB_0=CB_0$, отношение этих расстояний обратно отношению эксцентриситетов эллипсов. Так как для точек пересечения эллипсов отношение расстояний до директрис такое же, три точки лежат на одной прямой.

Источники и прецеденты использования

олимпиада
Название Олимпиада по геометрии имени И.Ф. Шарыгина
год
Год 2023
Заочный тур
задача
Номер 23 [10-11 кл]

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .