ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны На одной прямой взяты точки A1, B1 и C1, а на
другой — точки A2, B2 и C2. Прямые A1B2 и A2B1, B1C2 и B2C1, C1A2 и C2A1 пересекаются в точках C, A
и B соответственно. Докажите, что точки A, B и C лежат на одной
прямой (Папп).
На сторонах AB, BC и CD четырехугольника ABCD
(или на их продолжениях) взяты точки K, L и M. Прямые KL
и AC пересекаются в точке P, LM и BD — в точке Q.
Докажите, что точка пересечения прямых KQ и MP лежит на прямой AD.
Вася шёл от дома до автобусной остановки пешком со скоростью 4 км/ч, затем ехал на автобусе до школы со скоростью 30 км/ч и затратил на весь путь 1 час. Обратно из школы он ехал на автобусе со скоростью 36 км/ч и шёл пешком от остановки до дома со скоростью 3 км/ч. На обратную дорогу он потратил 1 час 5 мин. Найти путь, который Вася проехал на автобусе, и расстояние от дома до остановки. Докажите, что среди любых 10 целых чисел найдётся несколько, сумма которых делится на 10. Четырёхугольник ABCD вписан в окружность с центром в точке O. Точки E и F – середины не содержащих других вершин дуг AB и CD соответственно. Прямые, проходящие через точки E и F параллельно диагоналям четырёхугольника ABCD, пересекаются в точках K и L. Докажите, что прямая KL содержит точку O. а) На параллельных прямых a и b даны точки A и B.
Проведите через данную точку C прямую l, пересекающую прямые a
и b в таких точках A1 и B1, что AA1 = BB1.
Две хоккейные команды одинаковой силы договорились, что будут играть до тех пор, пока суммарный счёт не достигнет 10. Продолжения сторон AB и CD четырехугольника ABCD
пересекаются в точке P, а продолжения сторон BC и AD — в
точке Q. Через точку P проведена прямая, пересекающая стороны BC
и AD в точках E и F. Докажите, что точки пересечения диагоналей
четырехугольников
ABCD, ABEF и CDFE лежат на прямой, проходящей
через точку Q.
Можно ли составить из цифр 2, 3, 4, 9 (каждую цифру можно использовать сколько угодно раз) два числа, одно из которых в 19 раз больше другого? На высотах BB1 и CC1 треугольника ABC взяты точки B2 и C2 так, что ∠AB2C = ∠AC2B = 90°. Докажите, что AB2 = AC2. На сторонах AB, BC, CD и DA квадрата ABCD построены внутренним образом правильные треугольники ABK, BCL, CDM и DAN. Докажите, что середины сторон этих треугольников (не являющихся сторонами квадрата) и середины отрезков KL, LM, MN и NK образуют правильный двенадцатиугольник. Выпуклый многоугольник обладает следующим свойством: если все прямые, на которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю сторону, то полученные прямые образуют многоугольник, подобный исходному, причём параллельные стороны окажутся пропорциональными. Доказать, что в данный многоугольник можно вписать окружность. |
Задача 79272
Условие
Выпуклый многоугольник обладает следующим свойством: если все прямые, на
которых лежат его стороны, параллельно перенести на расстояние 1 во внешнюю
сторону, то полученные прямые образуют многоугольник, подобный исходному,
причём параллельные стороны окажутся пропорциональными. Доказать, что в данный
многоугольник можно вписать окружность.
РешениеЗаметим, что обратное утверждение доказать значительно проще: если в
многоугольник можно вписать окружность, то при отодвигании всех его сторон на
одно и тоже расстояние (в частности, на единицу) получается подобный
многоугольник, причём центром подобия служит центр окружности.
k + k2 + k3 + ... + kn + ... = r.
Таким образом, окружность с центром O и радиусом r касается всех сторон многоугольника P'.
Заметим, что в приведённом доказательстве было несущественно, какие именно стороны соответствуют друг другу при преобразовании подобия f, переводящем P в P'. Можно доказать такую лемму: если многоугольники P и P' (полученный из P отодвиганием сторон на 1) подобны с каким угодно соответствием сторон (с "поворотом" или "симметричным отражением" порядка сторон), то всегда будет иметь место и подобие c естественным порядком сторон — гомотетия с коэффициентом k (0 < k < 1). Доказательство, независимое от первого решения, мы приведём в конце, а пока дадим ещё два решения задачи, опирающихся на эту лемму (то есть подразумевающих естественное соответствие сторон при подобии). Второй способ. Пусть [AB] — сторона P, [A'B'] — соответствующая сторона P', O — точка пересечения (AA') и (BB'). Тогда Третий способ. Разрежем "щель" между многоугольниками P и P' на прямоугольники высоты 1 с основаниями A'B', B'С', С'D', ... и "ромбоиды" — четырёхугольники, остающиеся у каждой вершины A, B, C, .... Очевидно, из этих ромбоидов можно составить один многоугольник, описанный около окружности радиуса единица, причём его углы соответственно конгруэнтны Доказательство леммы. Будем для каждой стороны [AB] многоугольника P обозначать через [A'B'] ту сторону P', которая получается при отодвигании AB. Пусть при подобии стороне [A1B1] соответствует [A2'B2']: [A1B1] Тогда Источники и прецеденты использования
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке