Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Точки A' и B' — образы точек A и B при инверсии относительно некоторой окружности. Докажите, что точки A , B , A' и B' лежат на одной окружности.

Вниз   Решение


В таблицу записано девять чисел:

Известно, что шесть чисел – суммы строк и суммы столбцов таблицы – равны между собой:
a1 + a2 + a3 = b1 + b2 + b3 = c1 + c2 + c3 = a1 + b1 + c1 = a2 + b2 + c2 = a3 + b3 + c3.
Докажите, что сумма произведений строк таблицы равна сумме произведений её столбцов:   a1b1c1 + a2b2c2 + a3b3c3 = a1a2a3 + b1b2b3 + c1c2c3.

ВверхВниз   Решение


Докажите, что

$\displaystyle {\frac{1}{(p-a)(p-b)}}$ + $\displaystyle {\frac{1}{(p-b)(p-c)}}$ + $\displaystyle {\frac{1}{(p-c)(p-a)}}$ = $\displaystyle {\frac{1}{r^2}}$.


ВверхВниз   Решение


Найдите множество точек касания пар окружностей, касающихся сторон данного угла в данных точках A и B.

ВверхВниз   Решение


Пусть  a $ \leq$ b $ \leq$ c. Докажите, что тогда  ha + hb + hc $ \leq$ 3b(a2+ac+c2)/(4pR).

ВверхВниз   Решение


Правильный шестиугольник разрезан на N равновеликих параллелограммов. Доказать, что N делится на 3.

ВверхВниз   Решение


Докажите, что если вершины выпуклого n-угольника лежат в узлах клетчатой бумаги, а внутри и на его сторонах других узлов нет, то  n ≤ 4.

ВверхВниз   Решение


Докажите, что  ha $ \leq$ (a/2)ctg($ \alpha$/2).

ВверхВниз   Решение


К окружности с диаметром АС проведена касательная ВС. Отрезок АВ пересекает окружность в точке D. Через точку D проведена еще одна касательная к окружности, пересекающая отрезок ВС в точке K. В каком отношении точка K разделила отрезок ВС?

ВверхВниз   Решение


Постройте треугольник по биссектрисе, медиане и высоте, проведенным из одной вершины.

ВверхВниз   Решение


Картинная галерея представляет собой невыпуклый n-угольник. Докажите, что для обзора всей галереи достаточно [n/3] сторожей.

ВверхВниз   Решение


Точка P лежит на описанной окружности треугольника ABC. Построим треугольник A1B1C1, стороны которого параллельны отрезкам PA, PB, PC
(B1C1 || PA,  C1A1 || PB,  A1B1 || PC). Через точки A1, B1, C1 проведены прямые, параллельные соответственно BC, CA и AB. Докажите, что эти прямые пересекаются в точке, лежащей на описанной окружности треугольника A1B1C1.

ВверхВниз   Решение


Разрежьте неравносторонний треугольник на четыре подобных треугольника, среди которых не все одинаковы.

ВверхВниз   Решение


Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр.
Сколько существует трёхзначных замечательных чисел?

Вверх   Решение

Задача 86513
Темы:    [ Десятичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9
Из корзины
Прислать комментарий

Условие

Назовём натуральное число "замечательным", если оно – самое маленькое среди всех натуральных чисел с такой же, как у него, суммой цифр.
Сколько существует трёхзначных замечательных чисел?


Решение

"Замечательные" числа с суммой цифр от 1 до 18 – однозначные или двузначные. Поэтому замечательные трёхзначные числа имеют сумму цифр от 19 до 27. Каждой такой сумме соответствует одно замечательное число. Следовательно, трёхзначных "замечательных" чисел – девять.


Ответ

9 чисел.

Источники и прецеденты использования

кружок
Место проведения МЦНМО
класс
Класс 7
год
Год 2004/2005
занятие
Номер 7
Название Задачи с числами
задача
Номер 7.8
олимпиада
Название Московская математическая регата
год
Год 2000/01
класс
Класс 9
задача
Номер 2.3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .