ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Высота пирамиды равна 5, а основанием служит треугольник со сторонами 7, 8 и 9. Некоторая сфера касается плоскостей всех боковых граней пирамиды в точках, лежащих на сторонах основания. Найдите радиус сферы. Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через N – 1 секунду после ОМN–2 – OMN–1. AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1. Решите уравнение x3+(log25+log32+log53)x=(log23+log35+log52)x2+1. По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk: xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+j<аp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален. Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен? Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4. Будем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон. В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть Основания AD и BC трапеции ABCD равны a и b (a > b). В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся. В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику. |
Задача 97876
УсловиеВ классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику. Решение 1 Решим более общую задачу: пусть k учеников занимаются в n кружках (из трёх человек), k ≤ n. Первый способ. Поскольку кружков больше, чем учеников, в какой-то группе это неравенство также сохраняется. Поставим в соответствие каждой паре кружков этой группы пару учеников, каждый из которых ходит ровно в один из этих кружков. Пар кружков больше, чем пар учеников, поэтому какой-то паре учеников {a, b} соответствует по крайней мере две пары кружков {a, c, d}, {b, c, d} и {a, u, v}, {b, u, v}. Но кружки {a, c, d} и Второй способ. Если в группе, содержащей некоторый кружок {a, b, c}, есть кружки, содержащие хотя бы две из трех пар {a, b}, {a, c}, {b, c}, скажем кружок {a, b, d} и кружок {a, c, e}, то d = e (два последних кружка должны иметь двух общих членов). Единственный возможный кружок, пересекающийся с каждым из этих трех по двум элементам, – это {b, c, d}. Таким образом, в такой группе не более четырёх кружков, куда ходят не менее четырёх учеников. Итак, число кружков не превосходит числа учеников в классе. Решение 2Пусть есть k учеников и набор (не совпадающих по составу) кружков, каждый из которых посещает нечетное число учеников. Поставим в соответствие каждому кружку A k-мерный вектор a над полем Z2 из двух элементов: ai = 1 тогда и только тогда, когда i-й ученик посещает А. "Скалярный квадрат" Замечания7-8 кл. – 8 баллов, 9-10 кл. – 6 баллов Источники и прецеденты использования |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке