Processing math: 100%
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 12 задач
Версия для печати
Убрать все задачи

Высота пирамиды равна 5, а основанием служит треугольник со сторонами 7, 8 и 9. Некоторая сфера касается плоскостей всех боковых граней пирамиды в точках, лежащих на сторонах основания. Найдите радиус сферы.

Вниз   Решение


  Радиус OM круга равномерно вращается, поворачиваясь в секунду на угол 360°/N  (N – натуральное число, большее 3). В начальный момент он занимал положение OM0, через секунду – OM1, ещё через две секунды после этого (то есть через три секунды после начала) – OM2, ещё через три секунды после этого – OM3, и т. д., ещё через  N – 1  секунду после ОМN–2  – OMN–1.
  При каких N эти положения радиуса делят круг на N равных секторов?
  а) Верно ли, что к числу таких N относятся все степени двойки?
  б) Относятся ли к числу таких N какие-либо числа, не являющиеся степенями двойки?

ВверхВниз   Решение


AB и A1B1 — два скрещивающихся отрезка. O и O1 — соответственно их середины. Докажите, что отрезок OO1 меньше полусуммы отрезков AA1 и BB1.

ВверхВниз   Решение


Решите уравнение x3+(log25+log32+log53)x=(log23+log35+log52)x2+1.

ВверхВниз   Решение


По окружности написаны 12 чисел а1, а2, ..., а12. Если их списать, начиная с номера k, то получится вектор xk:

xk=(аk, аk+1, ..., аk+11), где под а13 понимается а1, под а14 понимается а2 и т.д. Вектор xk считается меньше вектора xp, если в первой же неравной паре будет аk+jp+j(j=0,1,...). Найти такое k, чтобы вектор xk был минимален.

ВверхВниз   Решение


Графики квадратного трёхчлена и его производной разбивают координатную плоскость на четыре части. Сколько корней имеет этот квадратный трёхчлен?

ВверхВниз   Решение


Докажите, что если произведение двух положительных чисел больше их суммы, то сумма больше 4.

ВверхВниз   Решение


Будем называть точку плоскости узлом, если обе её координаты – целые числа. Внутри некоторого треугольника с вершинами в узлах лежит ровно два узла (возможно, какие-то еще узлы лежат на его сторонах). Докажите, что прямая, проходящая через эти два узла, либо проходит через одну из вершин треугольника, либо параллельна одной из его сторон.

ВверхВниз   Решение


В каждой клетке квадрата  8×8  клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть
  а) больше 15?
  б) больше 20?

ВверхВниз   Решение


Основания AD и BC трапеции ABCD равны a и b  (a > b).
  а) Найдите длину отрезка, высекаемого диагоналями на средней линии.
  б) Найдите длину отрезка MN, концы которого делят стороны AB и CD в отношении  AM : MB = DN : NC = p : q.

ВверхВниз   Решение


В равнобедренной трапеции проведена диагональ. По контуру каждого из получившихся двух треугольников ползёт свой жук. Скорости движения жуков постоянны и одинаковы. Жуки не меняют направления обхода своих контуров, и по диагонали трапеции они ползут в разных направлениях. Докажите, что при любых начальных положениях жуков они когда-нибудь встретятся.

ВверхВниз   Решение


Автор: Фольклор

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.

Вверх   Решение

Задача 97876
Темы:    [ Объединение, пересечение и разность множеств ]
[ Принцип Дирихле (прочее) ]
[ Доказательство от противного ]
[ Линейная и полилинейная алгебра ]
Сложность: 4
Классы: 8,9,10
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

В классе 32 ученика. Было организовано 33 кружка, причём каждый кружок состоит из трёх человек и никакие два кружка не совпадают по составу. Доказать, что найдутся такие два кружка, которые пересекаются ровно по одному ученику.


Решение 1

  Решим более общую задачу: пусть k учеников занимаются в n кружках (из трёх человек),  kn.
  Предположим противное: каждые два кружка либо не пересекаются, либо пересекаются ровно по двум ученикам. Заметим, что если кружки K и L пересекаются с кружком M, то они пересекаются и между собой (их пересечения с M имеют общий элемент). Значит, кружки разбиваются на группы пересекающихся между собой кружков. Каждой группе кружков соответствует группа учеников – объединение их составов. Эти группы также не пересекаются. Далее можно рассуждать по-разному.

  Первый способ. Поскольку кружков больше, чем учеников, в какой-то группе это неравенство также сохраняется. Поставим в соответствие каждой паре кружков этой группы пару учеников, каждый из которых ходит ровно в один из этих кружков. Пар кружков больше, чем пар учеников, поэтому какой-то паре учеников  {a, b}  соответствует по крайней мере две пары кружков  {a, c, d},  {b, c, d}  и  {a, u, v},  {b, u, v}.  Но кружки  {a, c, d}  и
{b, u, v}  не могут иметь двух общих учеников, поскольку пары  {c, d}  и  {u, v}  не совпадают. Противоречие.

  Второй способ. Если в группе, содержащей некоторый кружок  {a, b, c},  есть кружки, содержащие хотя бы две из трех пар  {a, b}, {a, c}, {b, c},  скажем кружок  {a, b, d}  и кружок  {a, c, e},  то  d = e  (два последних кружка должны иметь двух общих членов). Единственный возможный кружок, пересекающийся с каждым из этих трех по двум элементам, – это  {b, c, d}.  Таким образом, в такой группе не более четырёх кружков, куда ходят не менее четырёх учеников.
  Если же все кружки группы содержат только одну из трёх указанных пар (например,  {a, b}),  то количество кружков в ней на 2 меньше количества всех учеников, их посещающих.

  Итак, число кружков не превосходит числа учеников в классе.


Решение 2

Пусть есть k учеников и набор (не совпадающих по составу) кружков, каждый из которых посещает нечетное число учеников. Поставим в соответствие каждому кружку A  k-мерный вектор a над полем Z2 из двух элементов:  ai = 1  тогда и только тогда, когда i-й ученик посещает А. "Скалярный квадрат"
(a, a) = 1  для каждого кружка. Если же два кружка A и В пересекаются по чётному числу учеников, то соответствующие векторы a и b "ортогональны":
(a, b) = 0.  Рассмотрим набор из n кружков, каждые два из которых удовлетворяют этому условию. Тогда соответствующие векторы линейно независимы. Действительно, умножив равенство  α1a1 + ... + αnan  на  ai,  получим   αi = 0.  Значит,  n ≤ k,  то есть число кружков с попарным "чётным" пересечением не превосходит числа учеников.

Замечания

7-8 кл. – 8 баллов, 9-10 кл. – 6 баллов

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант весенний тур, основной вариант, 9-10 класс
Задача
Номер 3
олимпиада
Название Турнир городов
Турнир
Дата 1984/1985
Номер 6
вариант
Вариант весенний тур, основной вариант, 7-8 класс
Задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .