Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Выбрано 14 задач
Версия для печати
Убрать все задачи

Разложите функции     и     (n ≥ 1)  в цепные дроби.
Определения многочленов Фибоначчи Fn(x) и Люка Ln(x) смотри, например, здесь.

Вниз   Решение


Сколько целых чисел от 1 до 1997 имеют сумму цифр, делящуюся на 5?

ВверхВниз   Решение


Проверьте, что многочлены Чебышёва Tn(x) и Un(x) (см. задачу 61099) удовлетворяют начальным условиям
T0(x) = 1,   T1(x) = x;   U0(x) = 1,   U1(x) = 2x,   и рекуррентным формулам   Tn+1(x) = 2xTn(x) – Tn–1(x),   Un+1(x) = 2xUn(x) – Un–1(x).

ВверхВниз   Решение


Автор: Фольклор

Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел?

ВверхВниз   Решение


Площадь треугольника ABC равна S. Найдите площадь треугольника, стороны которого равны медианам треугольника ABC.

ВверхВниз   Решение


Стороны треугольника равны a, b, c. Докажите, что медиана, проведённая к стороне c, равна $ {\frac{1}{2}}$$ \sqrt{2a^{2}+2b^{2}-c^{2}}$.

ВверхВниз   Решение


Три кузнечика сидят на прямой так, что два крайних отстоят на 1 м от среднего. Каждую секунду один из кузнечиков прыгает через другого в симметричную точку (если A прыгает через B в точку A1, то  AB = BA1).  Через некоторое время кузнечики оказались на тех же местах, что и вначале, но в другом порядке. Докажите, что поменялись местами крайние кузнечики.

ВверхВниз   Решение


На отрезке  [0, 1]  числовой оси расположены четыре точки: a, b, c, d.
Докажите, что найдётcя такая точка x, принадлежащая  [0, 1],  что  

 

ВверхВниз   Решение


Рассматриваются такие наборы действительных чисел  {x1, x2, x3, ..., x20},  заключённых между 0 и 1, что  x1x2x3...x20 = (1 – x1)(1 – x2)(1 – x3)...(1 – x20).  Найдите среди этих наборов такой, для которого значение x1x2x3...x20 максимально.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Каждый узел сетки обозначается некоторой буквой. Каким наименьшим числом различных букв нужно обозначить эти узлы, чтобы на отрезке (идущем по сторонам клеток - прим.ред.), соединяющем два узла, обозначенных одинаковыми буквами, находился, по крайней мере, один узел, обозначенный одной из других букв?

ВверхВниз   Решение


20 футбольных команд проводят первенство. В первый день все команды сыграли по одной игре. Во второй также все команды сыграли по одной игре.
Докажите, что после второго дня можно указать такие 10 команд, что никакие две из них не играли друг с другом.

ВверхВниз   Решение


Пусть a, b, c, d – такие вещественные числа, что  a³ + b³ + c³ + d³ = a + b + c + d = 0.
Докажите, что сумма каких-то двух из этих чисел равна нулю.

ВверхВниз   Решение


Автор: Фольклор

Дан выпуклый четырёхугольник и точка M внутри него. Доказать, что сумма расстояний от точки M до вершин четырёхугольника меньше суммы попарных расстояний между вершинами четырёхугольника.

ВверхВниз   Решение


Автор: Фольклор

У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.

Вверх   Решение

Задача 98249
Темы:    [ Системы линейных уравнений ]
[ Линейные неравенства и системы неравенств ]
[ Текстовые задачи (прочее) ]
Сложность: 3-
Классы: 6,7,8
Из корзины
Прислать комментарий

Условие

Автор: Фольклор

У кассира было 30 монет: 10, 15 и 20 копеек на сумму 5 рублей. Докажите, что 20-копеечных монет у него было больше, чем 10-копеечных.


Решение

Пусть у кассира было x 10-копеечных монет, y 15-копеечных и z 20-копеечных. Тогда  x + y + z = 30,  10x + 15y + 20z = 500.  Вычитая из второго уравнения первое, умноженное на 15, имеем:  5(z – x) = 50.  Отсюда  z – x = 10 > 0.

Замечания

3 балла

Источники и прецеденты использования

олимпиада
Название Турнир городов
Турнир
Номер 16
Дата 1994/1995
вариант
Вариант весенний тур, тренировочный вариант, 8-9 класс
Задача
Номер 1

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .