ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 [Всего задач: 15]      



Задача 65966  (#9.4.2)

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
[ Теорема Пифагора (прямая и обратная) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4-
Классы: 9,10

Внутри равностороннего треугольника ABC отмечена точка M так, что  ∠АМС = 150°.
Докажите, что отрезки АМ, ВМ и СМ таковы, что сумма квадратов двух из них равна квадрату третьего.

Прислать комментарий     Решение

Задача 65967  (#9.4.3)

Темы:   [ Разные задачи на разрезания ]
[ Процессы и операции ]
Сложность: 3+
Классы: 9,10

На столе лежит прямоугольный лист бумаги. Саша разрезает его по прямой на две части и кладёт части на стол. Потом он берёт одну из частей, снова режет по прямой на две части и кладёт части обратно на стол. Потом снова берёт со стола и разрезает одну часть, и так далее. Какое наименьшее количество разрезов необходимо сделать Саше, чтобы на столе оказалось, по крайней мере, 252 одиннадцатиугольника?

Прислать комментарий     Решение

Задача 65968  (#9.5.1)

Темы:   [ Графики и ГМТ на координатной плоскости ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 9,10

График линейной функции  у = kх + k + 1,  где  k > 0,  пересекает оси координат в точках А и В.
Какова наименьшая возможная площадь треугольника АВО (О – начало координат)?

Прислать комментарий     Решение

Задача 65969  (#9.5.2)

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Две касательные, проведенные из одной точки ]
[ Медиана, проведенная к гипотенузе ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 9,10

Две окружности касаются друг друга в точке C и прямой l в точках A и B. Прямая ВC пересекает вторую окружность в точке D. Докажите, что угол BАD – прямой.

Прислать комментарий     Решение

Задача 65970  (#9.5.3)

Темы:   [ Арифметика остатков (прочее) ]
[ Системы линейных уравнений ]
Сложность: 3
Классы: 9,10

Дано 10 натуральных чисел. Из десяти всевозможных сумм по девять чисел всего девять различных: 86, 87, 88, 89, 90, 91, 93, 94, 95. Найдите исходные числа.

Прислать комментарий     Решение

Страница: << 1 2 3 [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .