ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 709]      



Задача 35634

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 8,9

От треугольника отрезали три треугольника, причем каждый из трех разрезов коснулся вписанной в треугольник окружности (см. картинку). Известно, что периметры отрезанных треугольников равны P1, P2, P3. Найдите периметр исходного треугольника.
Прислать комментарий     Решение


Задача 52619

Тема:   [ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 8,9

Один из острых углов прямоугольного треугольника равен 25o. Под каким углом виден каждый его катет из центра описанной окружности?

Прислать комментарий     Решение


Задача 52622

Темы:   [ Вписанные и описанные окружности ]
[ Свойства серединных перпендикуляров к сторонам треугольника. ]
Сложность: 2+
Классы: 8,9

Постройте равнобедренный треугольник по основанию и радиусу описанной окружности.

Прислать комментарий     Решение


Задача 56830

Темы:   [ Вписанные и описанные окружности ]
[ Две касательные, проведенные из одной точки ]
Сложность: 2+
Классы: 7,8,9

На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AC1 = AB1, BA1 = BC1 и CA1 = CB1. Докажите, что A1, B1 и C1 — точки касания вписанной окружности со сторонами.
Прислать комментарий     Решение


Задача 77937

Темы:   [ Вписанные и описанные окружности ]
[ Неравенства для углов треугольника ]
Сложность: 2+
Классы: 8,9

В $ \Delta$ABC вписана окружность, которая касается его сторон в точках L, M и N. Докажите, что $ \Delta$LMN всегда остроугольный (независимо от вида $ \Delta$ABC).
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 709]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .