ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г. |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов. а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же. б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие? Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся? Найдите все такие пары натуральных чисел x, y, что числа x³ + y и y³ + x делятся на x² + y². В числе A цифры идут в возрастающем порядке (слева направо). Чему равна сумма цифр числа 9· A ? Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел. Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение НОД(m + 2000n, n + 2000m)? Два различных числа x и y (не обязательно целых) таковы, что x² – 2000x = y² – 2000y. Найдите сумму чисел x и y. Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел? В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и KL = KC. На стороне BC выбрана точка M так, что ∠KMB = ∠BAC. Докажите, что KM = AL. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]
Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.
KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и KL = KC. На стороне BC выбрана точка M так, что ∠KMB = ∠BAC. Докажите, что KM = AL.
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке