Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Берлов С.Л.

Сергей Львович Берлов - преподаватель физико-математического лицея 239 города Санкт-Петербурга, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике, серебряный призер Международной математической олимпиады 1988 г.

Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Автор: Назаров Ф.

В ряд стоят 15 слонов, каждый из которых весит целое число килограммов. Если взять любого слона, кроме стоящего справа, и прибавить к его весу удвоенный вес его правого соседа, то получится 15 тонн (для каждого из 14 слонов). Найдите вес каждого из 15 слонов.

Вниз   Решение


а) Докажите, что нельзя занумеровать рёбра куба числами 1, 2, ..., 11, 12 так, чтобы для каждой вершины сумма номеров трёх выходящих из неё рёбер была одной и той же.

б) Можно ли вычеркнуть одно из чисел 1, 2, ..., 12, 13 и оставшимися занумеровать рёбра куба так, чтобы выполнялось то же условие?

ВверхВниз   Решение


Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

ВверхВниз   Решение


Найдите все такие пары натуральных чисел x, y, что числа  x³ + y  и  y³ + x  делятся на  x² + y².

ВверхВниз   Решение


В числе A цифры идут в возрастающем порядке (слева направо). Чему равна сумма цифр числа 9· A ?

ВверхВниз   Решение


Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?

ВверхВниз   Решение


Наибольший общий делитель натуральных чисел m и n равен 1. Каково наибольшее возможное значение  НОД(m + 2000n, n + 2000m)?

ВверхВниз   Решение


Два различных числа x и y (не обязательно целых) таковы, что  x² – 2000x = y² – 2000y.  Найдите сумму чисел x и y.

ВверхВниз   Решение


Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]      



Задача 65752

Темы:   [ Выпуклые многоугольники ]
[ Доказательство от противного ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 10,11

Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Прислать комментарий     Решение

Задача 108887

Темы:   [ Вспомогательные равные треугольники ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
[ Четырехугольники (прочее) ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

KLMN – выпуклый четырёхугольник, в котором равны углы K и L. Серединные перпендикуляры к сторонам KN и LM пересекаются на стороне KL.
Докажите, что в этом четырёхугольнике равны диагонали.

Прислать комментарий     Решение

Задача 116499

Темы:   [ Признаки равенства прямоугольных треугольников ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 3
Классы: 7,8,9

В остроугольном треугольнике ABC на сторонах AC и AB отметили точки K и L соответственно, причём прямая KL параллельна BC и  KL = KC.  На стороне BC выбрана точка M так, что  ∠KMB = ∠BAC.  Докажите, что  KM = AL.

Прислать комментарий     Решение

Задача 116642

Темы:   [ Числовые неравенства. Сравнения чисел. ]
[ Разложение на множители ]
Сложность: 3
Классы: 8,9,10

Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?

Прислать комментарий     Решение

Задача 116660

Темы:   [ Делимость чисел. Общие свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 5,6,7

Пятизначное число называется неразложимым, если оно не раскладывается в произведение двух трёхзначных чисел.
Какое наибольшее количество неразложимых пятизначных чисел может идти подряд?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 118]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .