Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 118]
Дан параллелограмм ABCD с углом A, равным 60°. Точка O – центр описанной окружности треугольника ABD. Прямая AO пересекает биссектрису внешнего угла C в точке K. Найдите отношение AO : OK.
|
|
Сложность: 4 Классы: 7,8,9
|
Отрезки
AB и
CD длины 1 пересекаются в точке
O , причем
AOC=60
o .
Докажите, что
AC+BD1
.
|
|
Сложность: 4 Классы: 8,9,10
|
Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство:
|
|
Сложность: 4 Классы: 9,10,11
|
На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q, Y ≠ Q.)
|
|
Сложность: 4 Классы: 8,9,10
|
Даны натуральное число n > 3 и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 118]