Страница:
<< 30 31 32 33 34
35 36 >> [Всего задач: 177]
|
|
Сложность: 5 Классы: 8,9,10,11
|
а) В 99 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 50 ящиков, что в них окажется не менее половины всех яблок и не менее половины всех апельсинов.
б) В 100 ящиках лежат яблоки и апельсины.
Докажите, что можно так выбрать 34 ящика, что в них окажется не менее трети всех яблок и не менее трети всех апельсинов.
|
|
Сложность: 5 Классы: 8,9,10
|
Какое минимальное количество клеток можно закрасить черным в белом квадрате
300×300, чтобы никакие три черные клетки не образовывали уголок, а
после закрашивания любой белой клетки это условие нарушалось?
|
|
Сложность: 5 Классы: 8,9,10,11
|
Имеются три комиссии бюрократов. Известно, что для каждой пары бюрократов из разных комиссий среди членов оставшейся комиссии есть ровно 10 бюрократов, которые знакомы с обоими, и ровно 10 бюрократов, которые незнакомы с обоими. Найдите общее число бюрократов в комиссиях.
|
|
Сложность: 5 Классы: 9,10,11
|
В стране есть N городов. Некоторые пары из них соединены беспосадочными двусторонними авиалиниями. Оказалось, что для любого k (2 ≤ k ≤ N) при любом выборе k городов количество авиалиний между этими городами не будет превосходить 2k – 2. Докажите, что все авиалинии можно распределить между двумя авиакомпаниями так, что
не будет замкнутого авиамаршрута, в котором все авиалинии принадлежат одной компании.
|
|
Сложность: 5 Классы: 8,9,10
|
Клетчатый квадрат 2010×2010 разрезан на трёхклеточные уголки.
Докажите, что можно в каждом уголке отметить по клетке так, чтобы в каждой вертикали и в каждой горизонтали было поровну отмеченных клеток.
Страница:
<< 30 31 32 33 34
35 36 >> [Всего задач: 177]