Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]
|
|
Сложность: 4- Классы: 9,10,11
|
Числа a, b, c таковы, что уравнение x³ + ax² + bx + c = 0 имеет три действительных корня. Докажите, что если –2 ≤ a + b + c ≤ 0, то хотя бы один из этих корней принадлежит отрезку [0, 2].
На двух сторонах AB и BC правильного 2n-угольника взято по
точке K и N, причём угол KEN, где E – вершина, противоположная B, равен 180°/2n. Докажите, что NE – биссектриса угла KNC.
|
|
Сложность: 4 Классы: 8,9,10,11
|
В строку записаны в некотором порядке натуральные числа от 1 до 1993. Над строкой производится следующая операция: если на первом месте стоит число k, то первые k чисел в строке переставляются в обратном порядке. Докажите, что через несколько таких операций на первом месте окажется число 1.
|
|
Сложность: 4 Классы: 8,9,10
|
Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?
|
|
Сложность: 4 Классы: 10,11
|
Высоты тетраэдра пересекаются в одной точке.
Докажите, что эта точка, основание одной из высот и три точки, делящие другие высоты в отношении 2 : 1, считая от вершин, лежат на одной сфере.
Страница:
<< 1 2 3
4 5 6 7 >> [Всего задач: 32]