Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 194]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Хозяйка испекла квадратный торт и отрезала от него несколько кусков. Первый разрез проведён параллельно стороне исходного квадрата от края до края. Следующий разрез проведён в оставшейся части от края до края перпендикулярно предыдущему разрезу, далее аналогично (сколько-то раз). Все отрезанные куски имеют равную площадь. Может ли оставшаяся часть торта быть квадратом?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На плоскости расположены круг и правильный 100-угольник, имеющие одинаковые площади. Какое наибольшее количество вершин 100-угольника может находиться внутри круга (не на границе)?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Дан многочлен с целыми коэффициентами, имеющий хотя бы один целый корень. Наибольший общий делитель всех его целых корней равен $1$. Докажите, что если старший коэффициент многочлена равен $1$, то наибольший общий делитель остальных коэффициентов тоже равен $1$.
Дано, что ни для какой стороны треугольника из проведённых к ней высоты, биссектрисы и медианы нельзя составить треугольник.
Доказать, что один из углов треугольника больше чем 135°.
|
|
|
Сложность: 4- Классы: 7,8,9
|
При каком наименьшем
n существует
n -угольник,
который можно разрезать на треугольник, четырехугольник, ...,
2006-угольник?
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 194]