ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Храмцов Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 110149

Темы:   [ Свойства коэффициентов многочлена ]
[ Многочлен нечетной степени имеет действительный корень ]
[ Процессы и операции ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 4
Классы: 10,11

Автор: Храмцов Д.

Пусть многочлен  P(x) = anxn + an–1xn–1 + ... + a0  имеет хотя бы один действительный корень и  a0 ≠ 0.  Докажите, что, последовательно вычеркивая в некотором порядке одночлены в записи P(x), можно получить из него число a0 так, чтобы каждый промежуточный многочлен также имел хотя бы один действительный корень.

Прислать комментарий     Решение

Задача 110172

Темы:   [ Целочисленные решетки (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Геометрия на клетчатой бумаге ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

Можно ли во всех точках плоскости с целыми координатами записать натуральные числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?

Прислать комментарий     Решение

Задача 115364

Темы:   [ Раскладки и разбиения ]
[ Замощения костями домино и плитками ]
[ Индукция в геометрии ]
[ Производящие функции ]
Сложность: 4
Классы: 8,9,10,11

Автор: Храмцов Д.

Назовём лестницей высоты n фигуру, состоящую из всех клеток квадрата n×n, лежащих не выше диагонали (на рисунке показана лестница высоты 4). Сколькими различными способами можно разбить лестницу высоты n на несколько прямоугольников, стороны которых идут по линиям сетки, а площади попарно различны?

Прислать комментарий     Решение

Задача 116946

Темы:   [ Правильные многоугольники ]
[ Комбинаторная геометрия (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10

Автор: Храмцов Д.

На окружности длины 2013 отмечены 2013 точек, делящих её на равные дуги. В каждой отмеченной точке стоит фишка. Назовём расстоянием между двумя точками длину меньшей дуги между ними. При каком наибольшем n можно переставить фишки так, чтобы снова в каждой отмеченной точке было по фишке, а расстояние между любыми двумя фишками, изначально удалёнными не более чем на n, увеличилось?

Прислать комментарий     Решение

Задача 65124

Темы:   [ Числовые таблицы и их свойства ]
[ Раскраски ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория графов (прочее) ]
[ Принцип крайнего (прочее) ]
[ Индукция (прочее) ]
Сложность: 4+
Классы: 9,10,11

Автор: Храмцов Д.

Дано натуральное число  n ≥ 2.  Рассмотрим все такие покраски клеток доски n×n в k цветов, что каждая клетка покрашена ровно в один цвет и все k цветов встречаются. При каком наименьшем k в любой такой покраске найдутся четыре окрашенных в четыре разных цвета клетки, расположенные в пересечении двух строк и двух столбцов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .