Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 323]
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Двое играющих по очереди пишут – каждый на своей половине доски – по одному натуральному числу (повторения разрешаются) так, чтобы сумма всех чисел на доске не превосходила 10000. После того, как сумма всех чисел на доске становится равной 10000, игра заканчивается подсчетом суммы всех цифр на каждой половине. Выигрывает тот, на чьей половине сумма цифр меньше (при равных суммах – ничья). Может ли кто-нибудь из игроков выиграть, как бы ни играл противник?
По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.
|
|
|
Сложность: 4+ Классы: 8,9,10,11
|
В стране, валюта которой — тугрики, ходят только купюры двух целочисленных достоинств. И покупатель, и продавец имеют достаточно много и тех, и других купюр, но при каждом платеже могут использовать вместе не более $k$ купюр (включая сдачу). Известно, что так можно сделать платёж на любую целую сумму от 1 до $n$ тугриков. Каково наибольшее возможное $n$ (в зависимости от $k$)?
|
|
|
Сложность: 4+ Классы: 10,11
|
Назовем медианой системы 2
n точек плоскости прямую, проходящую ровно
через две из них, по обе стороны от которой точек этой системы поровну.
Какое наименьшее количество медиан может быть у системы из 2
n точек, никакие
три из которых не лежат на одной прямой?
|
|
|
Сложность: 5- Классы: 6,7,8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
Страница:
<< 56 57 58 59
60 61 62 >> [Всего задач: 323]