Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шаповалов А.В.

Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info.

Фильтр
Сложность с по   Класс с по  
Выбрано 18 задач
Версия для печати
Убрать все задачи

Правильный 1997-угольник разбит непересекающимися диагоналями на треугольники. Докажите, что среди них ровно один – остроугольный.

Вниз   Решение


Найдите геометрическое место вершин треугольников с заданными ортоцентром и центром описанной окружности.

ВверхВниз   Решение


В клетчатом квадрате 10×10 отмечены центры всех единичных квадратиков (всего 100 точек). Какое наименьшее число прямых, не параллельных сторонам квадрата,

нужно провести, чтобы вычеркнуть все отмеченные точки?

ВверхВниз   Решение


Bосстановите остроугольный треугольник по ортоцентру и серединам двух сторон.

ВверхВниз   Решение


Дан вписанный четырёхугольник ABCD. Точки P и Q симметричны точке C относительно прямых AB и AD соответственно.
Докажите, что прямая PQ проходит через ортоцентр H треугольника ABD.

ВверхВниз   Решение


Дан треугольник ABC. Пусть I – центр его вписанной окружности, и пусть X, Y, Z – центры вписанных окружностей треугольников AIB, BIC и AIC соответственно. Оказалось, что центр вписанной окружности треугольника XYZ совпадает с I. Обязательно ли тогда треугольник ABC равносторонний?

ВверхВниз   Решение


Дан выпуклый n-угольник A1...An. Пусть Pi  (i = 1, ..., n)  – такая точка на его границе, что прямая AiPi делит его площадь пополам. Известно, что все точки Pi не совпадают с вершинами и лежат на k сторонах n-угольника. Каково  а) наименьшее;  б) наибольшее возможное значение k при каждом данном n?

ВверхВниз   Решение


Назовём два неравных треугольника похожими, если можно обозначить их ABC и A'B'C' так, чтобы выполнялись равенства  AB = A'B',  AC = A'C'  и
B = ∠B'.  Существуют ли три попарно похожих треугольника?

ВверхВниз   Решение


На доске записаны числа 1, 2, 3, ..., 1000. Двое по очереди стирают по одному числу. Игра заканчивается, когда на доске остаются два числа. Если их сумма делится на 3, то побеждает тот, кто делал первый ход, если нет – то его партнер. Кто из них выиграет при правильной игре?

ВверхВниз   Решение


Обёрткой плоской картины размером 1×1 назовём прямоугольный лист бумаги площади 2, которым можно, не разрезая его, полностью обернуть картину с обеих сторон. Например, прямоугольник 2×1 и квадрат со стороной     – обёртки.
  а) Докажите, что есть и другие обёртки.
  б) Докажите, что обёрток бесконечно много.

ВверхВниз   Решение


Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

ВверхВниз   Решение


В остроугольном треугольнике отметили отличные от вершин точки пересечения описанной окружности с высотами, проведенными из двух вершин, и биссектрисой, проведенной из третьей вершины, после чего сам треугольник стерли. Восстановите его.


ВверхВниз   Решение


Восстановите прямоугольный треугольник ABC  (∠C = 90°)  по вершинам A, C и точке на биссектрисе угла B .

ВверхВниз   Решение


Решите уравнение  {(x + 1)³} = x³.

ВверхВниз   Решение


Турнир, в котором участвовало 20 спортсменов, судили 10 арбитров. Каждый сыграл с каждым один раз, и каждую встречу судил ровно один арбитр. После окончания каждой игры оба участника фотографировались с арбитром. Через год после турнира была найдена стопка из всех этих фотографий. Оказалось, что не про каждого можно определить, кем он является – спортсменом или арбитром. Сколько могло быть таких людей?

ВверхВниз   Решение


Радиусы описанной и вписанной окружностей треугольника ABC равны R и r; O, I – центры этих окружностей. Внешняя биссектриса угла C пересекает прямую AB в точке P. Точка Q – проекция точки P на прямую OI. Найдите расстояние OQ.

ВверхВниз   Решение


На окружности отметили n точек. Оказалось, что среди треугольников с вершинами в этих точках ровно половина остроугольных.
Найдите все значения n, при которых это возможно.

ВверхВниз   Решение


На доске написано:
    В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.

Вверх   Решение

Все задачи автора

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 319]      



Задача 111647

Тема:   [ Задачи на движение ]
Сложность: 3+
Классы: 8,9

Несколько спортсменов стартовали одновременно с одного и того же конца прямой беговой дорожки. Их скорости различны, но постоянны. Добежав до конца дорожки, спортсмен мгновенно разворачивается и бежит обратно, затем разворачивается на другом конце, и т.д. В какой-то момент все спортсмены снова оказались в одной точке. Докажите, что такие встречи всех будут продолжаться и впредь.

Прислать комментарий     Решение

Задача 111905

Темы:   [ Задачи на проценты и отношения ]
[ Ребусы ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

На доске написано:
    В этом предложении ... процентов цифр делятся на 2, ... процентов цифр делятся на 3, а ... процентов цифр делятся и на 2 и на 3.
Вставьте вместо многоточий какие-нибудь целые числа так, чтобы написанное на доске утверждение стало верным.

Прислать комментарий     Решение

Задача 115377

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Геометрия на клетчатой бумаге ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3+
Классы: 5,6,7

Саша разрезал шахматную доску 8× 8 по границам клеток на 30 прямоугольников так, чтобы равные прямоугольники не соприкасались даже углами (см. рис.). Попытайтесь улучшить его достижение, разрезав доску на большее число прямоугольников с соблюдением того же условия.


Прислать комментарий     Решение

Задача 116059

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз). Могли ли оказаться отмечены
  а) все числа, кроме, быть может, двух?
  б) все числа, кроме, быть может, одного?
  в) все числа?

Прислать комментарий     Решение

Задача 116065

Темы:   [ Шахматная раскраска ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3+
Классы: 6,7

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.
Какова площадь поверхности невидимого бруска?




Прислать комментарий     Решение

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 319]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .