ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта". |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну. Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его. |
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 201]
Через вершины A, B, C треугольника ABC проведены три параллельные прямые, пересекающие вторично его описанную окружность в точках A1, B1, C1 соответственно. Точки A2, B2, C2 симметричны точкам A1, B1, C1 относительно сторон BC, CA, AB соответственно. Докажите, что прямые AA2, BB2, CC2 пересекаются в одной точке.
Точку внутри треугольника назовём хорошей, если длины проходящих через неё чевиан обратно пропорциональны длинам соответствующих сторон. Найдите все треугольники, для которых число хороших точек – максимально возможное.
Четырехугольник $ABCD$ без равных и без параллельных сторон описан около окружности с центром $I$. Точки $K$, $L$, $M$ и $N$ – середины сторон $AB$, $BC$, $CD$ и $DA$. Известно, что $AB\cdot CD=4IK\cdot IM$. Докажите, что $BC\cdot AD=4IL\cdot IN$.
Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.
Трапеция АВСD с основаниями AB и CD вписана в окружность. Докажите, что четырёхугольник, образованный ортогональными проекциями любой точки этой окружности на прямые AC, BC, AD и BD, является вписанным.
Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке