|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Григорий Александрович Гальперин - российский и американский математик, автор популярных книг "Московские математические олимпиады" и "Математические бильярды". |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан тетраэдр, в который можно вписать сферу, касающуюся всех его рёбер. Пусть отрезки касательных из вершин равны a, b, c и d. Всегда ли можно из этих четырёх отрезков сложить какой-нибудь треугольник? (Не обязательно использовать все отрезки. Разрешается образовывать сторону треугольника из двух отрезков.) Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82]
Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
Решить в натуральных числах уравнение:
1 + 22 + 333 + 4444 + 55555 + 666666 +7777777 + 88888888 + 999999999 Определите, какая из них больше (или они равны).
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 82] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|